01403nas a2200133 4500008004300000245004000043210003900083260002400122520102800146100002101174700001901195700001901214856003601233 2003 en_Ud 00aSpace-adiabatic perturbation theory0 aSpaceadiabatic perturbation theory bInternational Press3 aWe study approximate solutions to the Schr\\\\\\\"odinger equation $i\\\\epsi\\\\partial\\\\psi_t(x)/\\\\partial t = H(x,-i\\\\epsi\\\\nabla_x) \\\\psi_t(x)$ with the Hamiltonian given as the Weyl quantization of the symbol $H(q,p)$ taking values in the space of bounded operators on the Hilbert space $\\\\Hi_{\\\\rm f}$ of fast ``internal\\\'\\\' degrees of freedom. By assumption $H(q,p)$ has an isolated energy band. Using a method of Nenciu and Sordoni \\\\cite{NS} we prove that interband transitions are suppressed to any order in $\\\\epsi$. As a consequence, associated to that energy band there exists a subspace of $L^2(\\\\mathbb{R}^d,\\\\Hi _{\\\\rm f})$ almost invariant under the unitary time evolution. We develop a systematic perturbation scheme for the computation of effective Hamiltonians which govern approximately the intraband time evolution. As examples for the general perturbation scheme we discuss the Dirac and Born-Oppenheimer type Hamiltonians and we reconsider also the time-adiabatic theory.1 aPanati, Gianluca1 aSpohn, Herbert1 aTeufel, Stefan uhttp://hdl.handle.net/1963/3041