01325nas a2200121 4500008004100000245014300041210006900184260002100253520084300274100002301117700001201140856005101152 2014 en d00aGlobal Structure of Admissible BV Solutions to Piecewise Genuinely Nonlinear, Strictly Hyperbolic Conservation Laws in One Space Dimension0 aGlobal Structure of Admissible BV Solutions to Piecewise Genuine bTaylor & Francis3 aThe paper describes the qualitative structure of an admissible BV solution to a strictly hyperbolic system of conservation laws whose characteristic families are piecewise genuinely nonlinear. More precisely, we prove that there are a countable set of points Θ and a countable family of Lipschitz curves T{script} such that outside T{script} ∪ Θ the solution is continuous, and for all points in T{script}{set minus}Θ the solution has left and right limit. This extends the corresponding structural result in [7] for genuinely nonlinear systems. An application of this result is the stability of the wave structure of solution w.r.t. -convergence. The proof is based on the introduction of subdiscontinuities of a shock, whose behavior is qualitatively analogous to the discontinuities of the solution to genuinely nonlinear systems.1 aBianchini, Stefano1 aYu, Lei uhttp://urania.sissa.it/xmlui/handle/1963/34694