01406nas a2200133 4500008004100000245004000041210004000081520101100121100002301132700002101155700002401176700002401200856004801224 2017 en d00aLinearisation of multiwell energies0 aLinearisation of multiwell energies3 aLinear elasticity can be rigorously derived from finite elasticity under the
assumption of small loadings in terms of Gamma-convergence. This was first done in the case of one-well energies with super-quadratic growth and later generalised to different settings, in particular to the case of multi-well energies where the distance between the wells is very small (comparable to the size of the load). In this paper we study the case when the distance between the wells is independent of the size of the load. In this context linear elasticity can be derived by adding to the multi-well energy a singular higher order term which penalises jumps from one well to another. The size of the singular term has to satisfy certain scaling assumptions whose optimality is shown in most of the cases. Finally, the derivation of linear elasticty from a two-well discrete
model is provided, showing that the role of the singular perturbation term is played in
this setting by interactions beyond nearest neighbours.1 aAlicandro, Roberto1 aDal Maso, Gianni1 aLazzaroni, Giuliano1 aPalombaro, Mariapia uhttp://preprints.sissa.it/handle/1963/35288