We study the lower semicontinuity in $GSBV^{p}(\Omega;\mathbb{R}^{m})$ of a free discontinuity functional $\mathcal{F}(u)$ that can be written as the sum of a crack term, depending only on the jump set $S_{u}$, and of a boundary term, depending on the trace of $u$ on $\partial\Omega$. We give sufficient conditions on the integrands for the lower semicontinuity of $\mathcal{F}$. Moreover, we prove a relaxation result, which shows that, if these conditions are not satisfied, the lower semicontinuous envelope of $\mathcal{F}$ can be represented by the sum of two integrals on $S_{u}$ and $\partial\Omega$, respectively.

1 aAlmi, Stefano1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/20.500.11767/1597900798nas a2200133 4500008004100000245008700041210006900128260001000197520034000207100002100547700002400568700002100592856005100613 2016 en d00aExistence and uniqueness of dynamic evolutions for a peeling test in dimension one0 aExistence and uniqueness of dynamic evolutions for a peeling tes bSISSA3 aIn this paper we present a one-dimensional model of a dynamic peeling test for a thin film, where the wave equation is coupled with a Griffith criterion for the propagation of the debonding front. Our main results provide existence and uniqueness for the solution to this coupled problem under different assumptions on the data.

1 aDal Maso, Gianni1 aLazzaroni, Giuliano1 aNardini, Lorenzo uhttp://urania.sissa.it/xmlui/handle/1963/3516800690nas a2200109 4500008004100000245007500041210006900116520030100185100002100486700002200507856005100529 2016 en d00aA model for the quasistatic growth of cracks with fractional dimension0 amodel for the quasistatic growth of cracks with fractional dimen3 aWe study a variational model for the quasistatic growth of cracks with fractional dimension in brittle materials. We give a minimal set of properties of the collection of admissible cracks which ensure the existence of a quasistatic evolution. Both the antiplane and the planar cases are treated.1 aDal Maso, Gianni1 aMorandotti, Marco uhttp://urania.sissa.it/xmlui/handle/1963/3517501267nas a2200121 4500008004100000245009800041210006900139520082000208100002101028700002601049700001901075856005101094 2015 en d00aExistence for constrained dynamic Griffith fracture with a weak maximal dissipation condition0 aExistence for constrained dynamic Griffith fracture with a weak 3 aThere are very few existence results for fracture evolution, outside of globally minimizing quasi-static evolutions. Dynamic evolutions are particularly problematic, due to the difficulty of showing energy balance, as well as of showing that solutions obey a maximal dissipation condition, or some similar condition that prevents stationary cracks from always being solutions. Here we introduce a new weak maximal dissipation condition and show that it is compatible with cracks constrained to grow smoothly on a smooth curve. In particular, we show existence of dynamic fracture evolutions satisfying this maximal dissipation condition, subject to the above smoothness constraints, and exhibit explicit examples to show that this maximal dissipation principle can indeed rule out stationary cracks as solutions.1 aDal Maso, Gianni1 aLarsen, Cristopher J.1 aToader, Rodica uhttp://urania.sissa.it/xmlui/handle/1963/3504500631nas a2200133 4500008004100000245010900041210006900150260001000219520015500229100002100384700002200405700001900427856005100446 2015 en d00aLower semicontinuity of a class of integral functionals on the space of functions of bounded deformation0 aLower semicontinuity of a class of integral functionals on the s bSISSA3 aWe study the lower semicontinuity of some free discontinuity functionals, whose volume term depends on the Euclidean norm of the symmetrized gradient.1 aDal Maso, Gianni1 aOrlando, Gianluca1 aToader, Rodica uhttp://urania.sissa.it/xmlui/handle/1963/3453301514nas a2200109 4500008004100000245013600041210006900177520106400246100002101310700002201331856005101353 2015 en d00aThe wave equation on domains with cracks growing on a prescribed path: existence, uniqueness, and continuous dependence on the data0 awave equation on domains with cracks growing on a prescribed pat3 aGiven a bounded open set $\Omega \subset \mathbb R^d$ with Lipschitz boundary and an increasing family $\Gamma_t$, $t\in [0,T]$, of closed subsets of $\Omega$, we analyze the scalar wave equation $\ddot{u} - div (A \nabla u) = f$ in the time varying cracked domains $\Omega\setminus\Gamma_t$. Here we assume that the sets $\Gamma_t$ are contained into a prescribed $(d-1)$-manifold of class $C^2$. Our approach relies on a change of variables: recasting the problem on the reference configuration $\Omega\setminus \Gamma_0$, we are led to consider a hyperbolic problem of the form $\ddot{v} - div (B\nabla v) + a \cdot \nabla v - 2 b \cdot \nabla \dot{v} = g$ in $\Omega \setminus \Gamma_0$. Under suitable assumptions on the regularity of the change of variables that transforms $\Omega\setminus \Gamma_t$ into $\Omega\setminus \Gamma_0$, we prove existence and uniqueness of weak solutions for both formulations. Moreover, we provide an energy equality, which gives, as a by-product, the continuous dependence of the solutions with respect to the cracks.1 aDal Maso, Gianni1 aLucardesi, Ilaria uhttp://urania.sissa.it/xmlui/handle/1963/3462900316nas a2200121 4500008004100000245001400041210001400055260001300069100002000082700002100102700002000123856005100143 2014 en d00aEditorial0 aEditorial bSpringer1 aCiliberto, Ciro1 aDal Maso, Gianni1 aVetro, Pasquale uhttp://urania.sissa.it/xmlui/handle/1963/3471201112nas a2200145 4500008004100000245013100041210006900172260001000241520051500251653010200766100002100868700002200889700001900911856003600930 2014 en d00aLaplace equation in a domain with a rectilinear crack: higher order derivatives of the energy with respect to the crack length0 aLaplace equation in a domain with a rectilinear crack higher ord bSISSA3 aWe consider the weak solution of the Laplace equation in a planar domain with a straight crack, prescribing a homogeneous Neumann condition on the crack and a nonhomogeneous Dirichlet condition on the rest of the boundary. For every k we express the k-th derivative of the energy with respect to the crack length in terms of a finite number of coefficients of the asymptotic expansion of the solution near the crack tip and of a finite number of other parameters, which only depend on the shape of the domain.10acracked domains, energy release rate, higher order derivatives, asymptotic expansion of solutions1 aDal Maso, Gianni1 aOrlando, Gianluca1 aToader, Rodica uhttp://hdl.handle.net/1963/727100423nas a2200133 4500008004100000245005600041210005500097260001300152653002200165100001800187700002100205700002700226856003600253 2014 en d00aNew results on Gamma-limits of integral functionals0 aNew results on Gammalimits of integral functionals bElsevier10aGamma-convergence1 aAnsini, Nadia1 aDal Maso, Gianni1 aZeppieri, Caterina Ida uhttp://hdl.handle.net/1963/588000712nas a2200157 4500008004100000245005200041210005100093260001300144300001200157490000800169520027400177100001800451700002100469700001900490856004500509 2014 en d00aQuasi-static crack growth in hydraulic fracture0 aQuasistatic crack growth in hydraulic fracture bElsevier a301-3180 v1093 aWe present a variational model for the quasi-static crack growth in hydraulic fracture in the framework of the energy formulation of rate-independent processes. The cracks are assumed to lie on a prescribed plane and to satisfy a very weak regularity assumption.

1 aAlmi, Stefano1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/20.500.11767/1735000777nas a2200133 4500008004100000245007800041210006900119260001000188520034000198653002800538100002100566700002000587856003600607 2014 en d00aQuasistatic evolution in perfect plasticity as limit of dynamic processes0 aQuasistatic evolution in perfect plasticity as limit of dynamic bSISSA3 aWe introduce a model of dynamic visco-elasto-plastic evolution in the linearly elastic regime and we prove an existence and uniqueness result. Then we study the limit of (a rescaled version of) the solutions when the data vary slowly. We prove that they converge, up to a subsequence, to a quasistatic evolution in perfect plasticity.10avisco-elasto-plasticity1 aDal Maso, Gianni1 aScala, Riccardo uhttp://hdl.handle.net/1963/698201169nas a2200145 4500008004100000245008500041210006900126260001000195520065500205653006700860100002100927700001900948700002000967856003600987 2014 en d00aSecond Order Asymptotic Development for the Anisotropic Cahn-Hilliard Functional0 aSecond Order Asymptotic Development for the Anisotropic CahnHill bSISSA3 aThe asymptotic behavior of an anisotropic Cahn-Hilliard functional with prescribed mass and Dirichlet boundary condition is studied when the parameter $\varepsilon$ that determines the width of the transition layers tends to zero. The double-well potential is assumed to be even and equal to $|s-1|^\beta$ near $s=1$, with $1<\beta<2$. The first order term in the asymptotic development by $\Gamma$-convergence is well-known, and is related to a suitable anisotropic perimeter of the interface. Here it is shown that, under these assumptions, the second order term is zero, which gives an estimate on the rate of convergence of the minimum values.10aGamma-convergence, Cahn-Hilliard functional, phase transitions1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni uhttp://hdl.handle.net/1963/739001048nas a2200145 4500008004100000245010400041210006900145260001300214520050500227653007400732100002100806700001900827700002000846856003600866 2013 en d00aAnalytical validation of a continuum model for epitaxial growth with elasticity on vicinal surfaces0 aAnalytical validation of a continuum model for epitaxial growth bSpringer3 aIn this paper it is shown existence of weak solutions of a variational inequality derived from the continuum model introduced by Xiang [7, formula (3.62)] (see also the work of Xiang and E [8] and Xu and Xiang [9]) to describe the self-organization of terraces and steps driven by misfit elasticity between a film and a substrate in heteroepitaxial growth. This model is obtained as a continuum limit of discrete theories of Duport, Politi, and Villain [3] and Tersoff, Phang, Zhang, and Lagally[6].10asingular nonlinear parabolic equations, Hilbert transform, thin films1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni uhttp://hdl.handle.net/1963/724500882nas a2200133 4500008004100000245004600041210004600087260001000133520050000143100002600643700002100669700002200690856003600712 2013 en d00aAttainment results for nematic elastomers0 aAttainment results for nematic elastomers bSISSA3 aWe consider a class of non-quasiconvex frame indifferent energy densities which includes Ogden-type energy densities for nematic elastomers. For the corresponding geometrically linear problem we provide an explicit minimizer of the energy functional satisfying a nontrivial boundary condition. Other attainment results, both for the nonlinear and the linearized model, are obtained by using the theory of convex integration introduced by Mueller and Sverak in the context of crystalline solids.1 aAgostiniani, Virginia1 aDal Maso, Gianni1 aDeSimone, Antonio uhttp://hdl.handle.net/1963/717400896nas a2200121 4500008004100000245005300041210005200094260004800146520050100194100002100695700002200716856003600738 2013 en d00aFracture models as Gamma-limits of damage models0 aFracture models as Gammalimits of damage models bAmerican Institute of Mathematical Sciences3 aWe analyze the asymptotic behavior of a variational model for damaged elastic materials. This model depends on two small parameters, which govern the width of the damaged regions and the minimum elasticity constant attained in the damaged regions. When these parameters tend to zero, we find that the corresponding functionals Gamma-converge to a functional related to fracture mechanics. The corresponding problem is brittle or cohesive, depending on the asymptotic ratio of the two parameters.1 aDal Maso, Gianni1 aIurlano, Flaviana uhttp://hdl.handle.net/1963/422501597nas a2200133 4500008004100000245010900041210006900150260001000219520113300229100002101362700002201383700002201405856003601427 2013 en d00aOne-dimensional swimmers in viscous fluids: dynamics, controllability, and existence of optimal controls0 aOnedimensional swimmers in viscous fluids dynamics controllabili bSISSA3 aIn this paper we study a mathematical model of one-dimensional swimmers performing a planar motion while fully immersed in a viscous fluid. The swimmers are assumed to be of small size, and all inertial effects are neglected. Hydrodynamic interactions are treated in a simplified way, using the local drag approximation of resistive force theory. We prove existence and uniqueness of the solution of the equations of motion driven by shape changes of the swimmer. Moreover, we prove a controllability result showing that given any pair of initial and final states, there exists a history of shape changes such that the resulting motion takes the swimmer from the initial to the final state. We give a constructive proof, based on the composition of elementary maneuvers (straightening and its inverse, rotation, translation), each of which represents the solution of an interesting motion planning problem. Finally, we prove the existence of solutions for the optimal control problem of finding, among the histories of shape changes taking the swimmer from an initial to a final state, the one of minimal energetic cost.1 aDal Maso, Gianni1 aDeSimone, Antonio1 aMorandotti, Marco uhttp://hdl.handle.net/1963/646700456nas a2200133 4500008004100000245006900041210006700110260001300177653003000190100001800220700002100238700002700259856003600286 2012 en d00aGamma-convergence and H-convergence of linear elliptic operators0 aGammaconvergence and Hconvergence of linear elliptic operators bElsevier10aLinear elliptic operators1 aAnsini, Nadia1 aDal Maso, Gianni1 aZeppieri, Caterina Ida uhttp://hdl.handle.net/1963/587800659nas a2200145 4500008004100000245011000041210006900151260003000220520013300250653002500383100002600408700002100434700002200455856003600477 2012 en d00aLinear elasticity obtained from finite elasticity by Gamma-convergence under weak coerciveness conditions0 aLinear elasticity obtained from finite elasticity by Gammaconver bGauthier-Villars;Elsevier3 aThe energy functional of linear elasticity is obtained as G-limit of suitable rescalings of the energies of finite elasticity...10aNonlinear elasticity1 aAgostiniani, Virginia1 aDal Maso, Gianni1 aDeSimone, Antonio uhttp://hdl.handle.net/1963/426701380nas a2200133 4500008004300000245008800043210006900131260001300200520092800213100002101141700002201162700002601184856003601210 2012 en_Ud 00aQuasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution0 aQuasistatic evolution for CamClay plasticity properties of the v bSpringer3 aCam-Clay plasticity is a well established model for the description of the mechanics of fine grained soils. As solutions can develop discontinuities in time, a weak notion of solution, in terms of a rescaled time s , has been proposed in [8] to give a meaning to this discontinuous evolution. In this paper we first prove that this rescaled evolution satisfies the flow-rule for the rate of plastic strain, in a suitable measure-theoretical sense. In the second part of the paper we consider the behavior of the evolution in terms of the original time variable t . We prove that the unrescaled solution satisfies an energy-dissipation balance and an evolution law for the internal variable, which can be expressed in terms of integrals depending only on the original time. Both these integral identities contain terms concentrated on the jump times, whose size can only be determined by looking at the rescaled formulation.1 aDal Maso, Gianni1 aDeSimone, Antonio1 aSolombrino, Francesco uhttp://hdl.handle.net/1963/390000974nas a2200121 4500008004300000245009300043210006900136260004800205520051800253100002100771700002400792856003600816 2011 en_Ud 00aCrack growth with non-interpenetration : a simplified proof for the pure Neumann problem0 aCrack growth with noninterpenetration a simplified proof for the bAmerican Institute of Mathematical Sciences3 aWe present a recent existence result concerning the quasi-static evolution of cracks in hyperelastic brittle materials, in the frame-work of finite elasticity with non-interpenetration. In particular, here we consider the problem where no Dirichlet conditions are imposed, the boundary is traction-free, and the body is subject only to time-dependent volume forces. This allows us to present the main ideas of the proof in a simpler way, avoiding some of the technicalities needed in the general case, studied in.1 aDal Maso, Gianni1 aLazzaroni, Giuliano uhttp://hdl.handle.net/1963/380100628nas a2200109 4500008004100000245003900041210003800080260004800118520029500166100002100461856003600482 2011 en d00aEnnio De Giorgi and Γ-convergence0 aEnnio De Giorgi and Γconvergence bAmerican Institute of Mathematical Sciences3 aΓ-convergence was introduced by Ennio De Giorgi in a series of papers published between 1975 and 1983. In the same years he developed many applications of this tool to a great variety of asymptotic problems in the calculus of variations and in the theory of partial differential equations.1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/530801495nas a2200133 4500008004300000245008600043210006900129260005100198520101100249100002101260700002201281700002201303856003601325 2011 en_Ud 00aAn Existence and Uniqueness Result for the Motion of Self-Propelled Microswimmers0 aExistence and Uniqueness Result for the Motion of SelfPropelled bSociety for Industrial and Applied Mathematics3 aWe present an analytical framework to study the motion of micro-swimmers in a viscous fluid. Our main result is that, under very mild regularity assumptions, the change of shape determines uniquely the motion of the swimmer. We assume that the Reynolds number is very small, so that the velocity field of the surrounding, infinite fluid is governed by the Stokes system and all inertial effects can be neglected. Moreover, we enforce the self propulsion constraint (no external forces and torques). Therefore, Newton\\\'s equations of motion reduce to the vanishing of the viscous drag force and torque acting on the body. By exploiting an integral representation of viscous force and torque, the equations of motion can be reduced to a system of six ordinary differential equations. Variational techniques are used to prove the boundedness and measurability of its coefficients, so that classical results on ordinary differential equations can be invoked to prove existence and uniqueness of the solution.1 aDal Maso, Gianni1 aDeSimone, Antonio1 aMorandotti, Marco uhttp://hdl.handle.net/1963/389401004nas a2200133 4500008004100000245007400041210006900115260003400184520055100218653001800769100002100787700002600808856003600834 2011 en d00aExistence for wave equations on domains with arbitrary growing cracks0 aExistence for wave equations on domains with arbitrary growing c bEuropean Mathematical Society3 aIn this paper we formulate and study scalar wave equations on domains with arbitrary growing cracks. This includes a zero Neumann condition on the crack sets, and the only assumptions on these sets are that they have bounded surface measure and are growing in the sense of set inclusion. In particular, they may be dense, so the weak formulations must fall outside of the usual weak formulations using Sobolev spaces. We study both damped and undamped equations, showing existence and, for the damped equation, uniqueness and energy conservation.10aWave equation1 aDal Maso, Gianni1 aLarsen, Cristopher J. uhttp://hdl.handle.net/1963/428401081nas a2200121 4500008004100000245004900041210004900090260001000139520061100149653014200760100002100902856003600923 2011 en d00aGeneralised functions of bounded deformation0 aGeneralised functions of bounded deformation bSISSA3 aWe introduce the space GBD of generalized functions of bounded deformation and study the structure properties of these functions: the rectifiability and the slicing properties of their jump sets, and the existence of their approximate symmetric gradients. We conclude by proving a compactness results for GBD, which leads to a compactness result for the space GSBD of generalized special functions of bounded deformation. The latter is connected to the existence of solutions to a weak formulation of some variational problems arising in fracture mechanics in the framework of linearized elasticity.

10afree discontinuity problems, special functions of bounded deformation, jump set, rec- tifiability, slicing, approximate differentiability1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/637401420nas a2200145 4500008004300000245012100043210006900164260001300233520089900246653002401145100002101169700002201190700002601212856003601238 2011 en_Ud 00aQuasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling0 aQuasistatic evolution for CamClay plasticity a weak formulation bSpringer3 aCam-Clay nonassociative plasticity exhibits both hardening and softening behaviour, depending on the loading. For many initial data the classical formulation of the quasistatic evolution problem has no smooth solution. We propose here a notion of generalized solution, based on a viscoplastic approximation. To study the limit of the viscoplastic evolutions we rescale time, in such a way that the plastic strain is uniformly Lipschitz with respect to the rescaled time. The limit of these rescaled solutions, as the viscosity parameter tends to zero, is characterized through an energy-dissipation balance, that can be written in a natural way using the rescaled time. As shown in [4] and [6], the proposed solution may be discontinuous with respect to the original time. Our formulation allows to compute the amount of viscous dissipation occurring instantaneously at each discontinuity time.10aCam-Clay plasticity1 aDal Maso, Gianni1 aDeSimone, Antonio1 aSolombrino, Francesco uhttp://hdl.handle.net/1963/367001135nas a2200145 4500008004300000245008100043210006900124260002300193520065600216100002100872700002100893700001900914700002000933856003600953 2011 en_Ud 00aSingular perturbation models in phase transitions for second order materials0 aSingular perturbation models in phase transitions for second ord bIndiana University3 aA variational model proposed in the physics literature to describe the onset of pattern formation in two-component bilayer membranes and amphiphilic monolayers leads to the analysis of a Ginzburg-Landau type energy with a negative term depending on the first derivative of the phase function. Scaling arguments motivate the study of the family of second order singular perturbed energies Fe having a negative term depending on the first derivative of the phase function. Here, the asymptotic behavior of {Fe} is studied using G-convergence techniques. In particular, compactness results and an integral representation of the limit energy are obtained.1 aChermisi, Milena1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni uhttp://hdl.handle.net/1963/385800629nas a2200121 4500008004300000245007900043210006900122260002200191520021000213100002100423700002700444856003600471 2010 en_Ud 00aHomogenization of fiber reinforced brittle material: the intermediate case0 aHomogenization of fiber reinforced brittle material the intermed bWalter de Gruyter3 aWe derive a cohesive fracture model by homogenizing a periodic composite material whose microstructure is characterized by the presence of brittle inclusions in a reticulated unbreakable elastic structure.1 aDal Maso, Gianni1 aZeppieri, Caterina Ida uhttp://hdl.handle.net/1963/360700409nas a2200109 4500008004300000245009100043210006900134100002100203700001900224700002000243856003600263 2010 en_Ud 00aNonlocal character of the reduced theory of thin films with higher order perturbations0 aNonlocal character of the reduced theory of thin films with high1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni uhttp://hdl.handle.net/1963/375400550nas a2200109 4500008004300000245008300043210006900126520016900195100002100364700001900385856003600404 2010 en_Ud 00aQuasistatic crack growth in elasto-plastic materials: the two-dimensional case0 aQuasistatic crack growth in elastoplastic materials the twodimen3 aWe study a variational model for the quasistatic evolution of elasto-plastic materials with cracks in the case of planar small strain associative elasto-plasticity.1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/1963/296400595nas a2200109 4500008004300000245007600043210006900119520021600188100002100404700002400425856003600449 2010 en_Ud 00aQuasistatic crack growth in finite elasticity with non-interpenetration0 aQuasistatic crack growth in finite elasticity with noninterpenet3 aWe present a variational model to study the quasistatic growth of brittle cracks in hyperelastic materials, in the framework of finite elasticity, taking\\ninto account the non-interpenetration condition.

1 aDal Maso, Gianni1 aLazzaroni, Giuliano uhttp://hdl.handle.net/1963/339701304nas a2200121 4500008004300000245008200043210006900125520088100194653002401075100002101099700002601120856003601146 2010 en_Ud 00aQuasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case0 aQuasistatic evolution for CamClay plasticity the spatially homog3 aWe study the spatially uniform case of the problem of quasistatic evolution in small strain nonassociative elastoplasticity (Cam-Clay model). Through the introdution of a viscous approximation, the problem reduces to determine the limit behavior of the solutions of a singularly perturbed system of ODE\\\'s in a finite dimensional Banach space. Depending on the sign of two explicit scalar indicators, we see that the limit dynamics presents, under quite generic assumptions, the alternation of three possible regimes: the elastic regime, when the limit equation is just the equation of linearized elasticity, the slow dynamics, when the strain evolves smoothly on the yield surface and plastic flow is produced, and the fast dynamics, which may happen only in the softening regime, where\\nviscous solutions exhibit a jump across a heteroclinic orbit of an auxiliary system.10aCam-Clay plasticity1 aDal Maso, Gianni1 aSolombrino, Francesco uhttp://hdl.handle.net/1963/367100927nas a2200133 4500008004300000245007300043210006900116520048700185100002100672700001900693700002000712700002500732856003600757 2009 en_Ud 00aA higher order model for image restoration: the one dimensional case0 ahigher order model for image restoration the one dimensional cas3 aThe higher order total variation-based model for image restoration proposed by Chan, Marquina, and Mulet in [6] is analyzed in one dimension. A suitable functional framework in which the minimization problem is well posed is being proposed and it is proved analytically that the\\nhigher order regularizing term prevents the occurrence of the staircase effect. The generalized version of the model considered here includes, as particular cases, some curvature dependent functionals.1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/317401152nas a2200121 4500008004300000245007700043210006900120260000900189520075400198100002100952700002100973856003600994 2009 en_Ud 00aHomogenization of fiber reinforced brittle materials: the extremal cases0 aHomogenization of fiber reinforced brittle materials the extrema bSIAM3 aWe analyze the behavior of a fragile material reinforced by a reticulated elastic unbreakable structure in the case of antiplane shear. The microscopic geometry of this material is described by means of two small parameters: the period $\\\\varepsilon$ of the grid and the ratio $\\\\delta$ between the thickness of the fibers and the period $\\\\varepsilon$. We show that the asymptotic behavior as $\\\\varepsilon\\\\to0^+$ and $\\\\delta\\\\to0^+$ depends dramatically on the relative size of these parameters. Indeed, in the two cases considered, i.e., $\\\\varepsilon\\\\ll\\\\delta$ and $\\\\varepsilon\\\\gg\\\\delta$, we obtain two different limit models: a perfectly elastic model and an elastic model with macroscopic cracks, respectively.1 aBarchiesi, Marco1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/270500735nas a2200109 4500008004300000245009500043210006900138520033900207100002100546700002200567856003600589 2009 en_Ud 00aQuasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions0 aQuasistatic evolution for CamClay plasticity examples of spatial3 aWe study a quasistatic evolution problem for Cam-Clay plasticity under a special loading program which leads to spatially homogeneous solutions. Under some initial conditions, the solutions exhibit a softening behaviour and time discontinuities.\\nThe behavior of the solutions at the jump times is studied by a viscous approximation.1 aDal Maso, Gianni1 aDeSimone, Antonio uhttp://hdl.handle.net/1963/339500454nas a2200109 4500008004300000245012300043210006900166100002100235700002600256700002600282856003600308 2009 en_Ud 00aA variational model for quasistatic crack growth in nonlinear elasticity: some qualitative properties of the solutions0 avariational model for quasistatic crack growth in nonlinear elas1 aDal Maso, Gianni1 aGiacomini, Alessandro1 aPonsiglione, Marcello uhttp://hdl.handle.net/1963/267500386nas a2200109 4500008004300000245006300043210006300106260003100169100002100200700001900221856003600240 2008 en_Ud 00aDecomposition results for functions with bounded variation0 aDecomposition results for functions with bounded variation bUnione Matematica Italiana1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/1963/353501036nas a2200133 4500008004300000245007100043210006900114520059000183100002100773700002200794700002500816700002500841856003600866 2008 en_Ud 00aGlobally stable quasistatic evolution in plasticity with softening0 aGlobally stable quasistatic evolution in plasticity with softeni3 aWe study a relaxed formulation of the quasistatic evolution problem in the context of small strain associative elastoplasticity with softening. The relaxation takes place in spaces of generalized Young measures. The notion of solution is characterized by the following properties: global stability at each time and energy balance on each\\ntime interval. An example developed in detail compares the solutions obtained by this method with the ones provided by a vanishing viscosity approximation, and shows that only the latter capture a decreasing branch in the stress-strain response.1 aDal Maso, Gianni1 aDeSimone, Antonio1 aMora, Maria Giovanna1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/196500681nas a2200109 4500008004300000245012000043210006900163520026100232100002100493700002100514856003600535 2008 en_Ud 00aGradient bounds for minimizers of free discontinuity problems related to cohesive zone models in fracture mechanics0 aGradient bounds for minimizers of free discontinuity problems re3 aIn this note we consider a free discontinuity problem for a scalar function, whose energy depends also on the size of the jump. We prove that the gradient of every smooth local minimizer never exceeds a constant, determined only by the data of the problem.1 aDal Maso, Gianni1 aGarroni, Adriana uhttp://hdl.handle.net/1963/172301276nas a2200133 4500008004300000245008900043210006900132520081200201100002101013700002201034700002501056700002501081856003601106 2008 en_Ud 00aA vanishing viscosity approach to quasistatic evolution in plasticity with softening0 avanishing viscosity approach to quasistatic evolution in plastic3 aWe deal with quasistatic evolution problems in plasticity with softening, in the framework of small strain associative elastoplasticity. The presence of a nonconvex term due to the softening phenomenon requires a nontrivial extension of the variational framework for rate-independent problems to the case of a nonconvex energy functional. We argue that, in this case, the use of global minimizers in the corresponding incremental problems is not justified from the mechanical point of view. Thus, we analize a different selection criterion for the solutions of the quasistatic evolution problem, based on a viscous approximation. This leads to a generalized formulation in terms of Young measures, developed in the first part of the paper. In the second part we apply our approach to some concrete examples.1 aDal Maso, Gianni1 aDeSimone, Antonio1 aMora, Maria Giovanna1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/184400613nas a2200109 4500008004300000245006800043210006200111520025400173100002100427700001900448856003600467 2007 en_Ud 00aOn a notion of unilateral slope for the Mumford-Shah functional0 anotion of unilateral slope for the MumfordShah functional3 aIn this paper we introduce a notion of unilateral slope for the Mumford-Shah functional, and provide an explicit formula in the case of smooth cracks. We show that the slope is not lower semicontinuous and study the corresponding relaxed functional.1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/1963/205900626nas a2200109 4500008004300000245008200043210006900125520024600194100002100440700001900461856003600480 2007 en_Ud 00aQuasistatic crack growth for a cohesive zone model with prescribed crack path0 aQuasistatic crack growth for a cohesive zone model with prescrib3 aIn this paper we study the quasistatic crack growth for a cohesive zone model. We assume that the crack path is prescribed and we study the time evolution of the crack in the framework of the variational theory of rate-independent processes.1 aDal Maso, Gianni1 aZanini, Chiara uhttp://hdl.handle.net/1963/168600558nas a2200121 4500008004300000245007600043210006900119520014800188100002100336700002100357700002200378856003600400 2007 en_Ud 00aQuasistatic evolution problems for pressure-sensitive plastic materials0 aQuasistatic evolution problems for pressuresensitive plastic mat3 aWe study quasistatic evolution problems for pressure-sensitive plastic materials in the context of small strain associative perfect plasticity.1 aDal Maso, Gianni1 aDemyanov, Alexey1 aDeSimone, Antonio uhttp://hdl.handle.net/1963/196200987nas a2200133 4500008004300000245005700043210005600100520056800156100002100724700002200745700002500767700002500792856003600817 2007 en_Ud 00aTime-dependent systems of generalized Young measures0 aTimedependent systems of generalized Young measures3 aIn this paper some new tools for the study of evolution problems in the framework of Young measures are introduced. A suitable notion of time-dependent system of generalized Young measures is defined, which allows to extend the classical notions of total variation and absolute continuity with respect to time, as well as the notion of time derivative. The main results are a Helly type theorem for sequences of systems of generalized Young measures and a theorem about the existence of the time derivative for systems with bounded variation with respect to time.1 aDal Maso, Gianni1 aDeSimone, Antonio1 aMora, Maria Giovanna1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/179501091nas a2200121 4500008004300000245008400043210006900127520066900196100002100865700002200886700002500908856003600933 2006 en_Ud 00aQuasistatic evolution problems for linearly elastic-perfectly plastic materials0 aQuasistatic evolution problems for linearly elasticperfectly pla3 aThe problem of quasistatic evolution in small strain associative elastoplasticity is studied in the framework of the variational theory for rate-independent processes. Existence of solutions is proved through the use of incremental variational problems in spaces of functions with bounded deformation. This provides a new approximation result for the solutions of the quasistatic evolution problem, which are shown to be absolutely continuous in time. Four equivalent formulations of the problem in rate form are derived. A strong formulation of the flow rule is obtained by introducing a precise definition of the stress on the singular set of the plastic strain.1 aDal Maso, Gianni1 aDeSimone, Antonio1 aMora, Maria Giovanna uhttp://hdl.handle.net/1963/212900654nas a2200097 4500008004300000245004700043210004700090520036200137100002100499856003600520 2006 en_Ud 00aVariational problems in fracture mechanics0 aVariational problems in fracture mechanics3 aWe present some recent existence results for the variational model of crack growth in brittle materials proposed by Francfort and Marigo in 1998. These results, obtained in collaboration with Francfort and Toader, cover the case of arbitrary space dimension with a general quasiconvex bulk energy and with prescribed boundary deformations and applied loads.1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/181600706nas a2200121 4500008004300000245005300043210005300096520033400149100002100483700002500504700001900529856003600548 2005 en_Ud 00aQuasistatic Crack Growth in Nonlinear Elasticity0 aQuasistatic Crack Growth in Nonlinear Elasticity3 aIn this paper, we prove a new existence result for a variational model of crack growth in brittle materials proposed in [15]. We consider the case of $n$-dimensional finite elasticity, for an arbitrary $n\\\\ge1$, with a quasiconvex bulk energy and with prescribed boundary deformations and applied loads, both depending on time.1 aDal Maso, Gianni1 aFrancfort, Gilles A.1 aToader, Rodica uhttp://hdl.handle.net/1963/229300351nas a2200085 4500008004300000245009600043210006900139100002100208856003600229 2005 en_Ud 00aSolutions of Neumann problems in domains with cracks and applications to fracture mechanics0 aSolutions of Neumann problems in domains with cracks and applica1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/168401188nas a2200121 4500008004100000245012000041210006900161260001800230520074100248100002100989700002001010856003601030 2004 en d00aAsymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains0 aAsymptotic behaviour and correctors for linear Dirichlet problem bSISSA Library3 aWe consider a sequence of Dirichlet problems in varying domains (or, more generally, of relaxed Dirichlet problems involving measures in M_0) for second order linear elliptic operators in divergence form with varying matrices of coefficients. When the matrices H-converge to a matrix A^0, we prove that there exist a subsequence and a measure mu^0 in M_0 such that the limit problem is the relaxed Dirichlet problem corresponding to A^0 and mu^0. We also prove a corrector result which provides an explicit approximation of the solutions in the H^1-norm, and which is obtained by multiplying the corrector for the H-converging matrices by some special test function which depends both on the varying matrices and on the varying domains.1 aDal Maso, Gianni1 aMurat, Francois uhttp://hdl.handle.net/1963/161101010nas a2200145 4500008004300000245005800043210005800101260001300159520057100172100002100743700001900764700002000783700002500803856003600828 2004 en_Ud 00aHigher order quasiconvexity reduces to quasiconvexity0 aHigher order quasiconvexity reduces to quasiconvexity bSpringer3 aIn this paper it is shown that higher order quasiconvex functions suitable in the variational treatment of problems involving second derivatives may be extended to the space of all matrices as classical quasiconvex functions. Precisely, it is proved that a smooth strictly 2-quasiconvex function with p-growth at infinity, p>1, is the restriction to symmetric matrices of a 1-quasiconvex function with the same growth. As a consequence, lower semicontinuity results for second-order variational problems are deduced as corollaries of well-known first order theorems.1 aDal Maso, Gianni1 aFonseca, Irene1 aLeoni, Giovanni1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/291100759nas a2200121 4500008004300000245007800043210006900121520034600190100002100536700002500557700001900582856003600601 2004 en_Ud 00aQuasi-static evolution in brittle fracture: the case of bounded solutions0 aQuasistatic evolution in brittle fracture the case of bounded so3 aThe main steps of the proof of the existence result for the quasi-static evolution of cracks in brittle materials, obtained in [7] in the vector case and for a general quasiconvex elastic energy, are presented here under the simplifying assumption that the minimizing sequences involved in the problem are uniformly bounded in $L^\\\\infty$.1 aDal Maso, Gianni1 aFrancfort, Gilles A.1 aToader, Rodica uhttp://hdl.handle.net/1963/222900496nas a2200109 4500008004100000245017800041210006900219260001800288100002100306700002300327856003600350 2003 en d00aAutonomous integral functionals with discontinous nonconvex integrands: Lipschitz regularity of mimimizers, DuBois-Reymond necessary conditions and Hamilton-Jacobi equations0 aAutonomous integral functionals with discontinous nonconvex inte bSISSA Library1 aDal Maso, Gianni1 aFrankowska, Helene uhttp://hdl.handle.net/1963/162500697nas a2200133 4500008004300000245009100043210006900134260001300203520024900216100002200465700001900487700002100506856003600527 2003 en_Ud 00aThe calibration method for the Mumford-Shah functional and free-discontinuity problems0 acalibration method for the MumfordShah functional and freediscon bSpringer3 aWe present a minimality criterion for the Mumford-Shah functional, and more generally for non convex variational integrals on SBV which couple a surface and a bulk term. This method provides short and easy proofs for several minimality results.1 aAlberti, Giovanni1 aBouchitte, Guy1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/305100672nas a2200133 4500008004100000245008000041210006900121260001800190520022400208100002100432700002300453700002600476856003600502 2003 en d00aA stability result for nonlinear Neumann problems under boundary variations0 astability result for nonlinear Neumann problems under boundary v bSISSA Library3 aIn this paper we study, in dimension two, the stability of the solutions of some nonlinear elliptic equations with Neumann boundary conditions, under perturbations of the domains in the Hausdorff complementary topology.1 aDal Maso, Gianni1 aEbobisse, Francois1 aPonsiglione, Marcello uhttp://hdl.handle.net/1963/161800398nas a2200121 4500008004300000245006200043210006100105260001300166100002100179700001800200700002200218856003600240 2002 en_Ud 00aLinearized elasticity as gamma-limit of finite elasticity0 aLinearized elasticity as gammalimit of finite elasticity bSpringer1 aDal Maso, Gianni1 aNegri, Matteo1 aPercivale, Danilo uhttp://hdl.handle.net/1963/305201609nas a2200121 4500008004100000245009900041210006900140260001800209520118400227100002101411700001901432856003601451 2002 en d00aA model for the quasi-static growth of a brittle fracture: existence and approximation results0 amodel for the quasistatic growth of a brittle fracture existence bSISSA Library3 aWe study a variant of the variational model for the quasi-static growth of brittle fractures proposed by Francfort and Marigo.9 The main feature of our model is that, in the discrete-time formulation, in each step we do not consider absolute minimizers of the energy, but, in a sense, we look for local minimizers which are sufficiently close to the approximate solution obtained in the previous step. This is done by introducing in the variational problem an additional term which penalizes the L2-distance between the approximate solutions at two consecutive times. We study the continuous-time version of this model, obtained by passing to the limit as the time step tends to zero, and show that it satisfies (for almost every time) some minimality conditions which are slightly different from those considered in Refs. 9 and 8, but are still enough to prove (under suitable regularity assumptions on the crack path) that the classical Griffith\\\'s criterion holds at the crack tips. We also prove that, if no initial crack is present and if the data of the problem are sufficiently smooth, no crack will develop in this model, provided the penalization term is large enough.1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/1963/157101599nas a2200121 4500008004100000245008900041210006900130260001800199520118400217100002101401700001901422856003601441 2002 en d00aA model for the quasi-static growth of brittle fractures based on local minimization0 amodel for the quasistatic growth of brittle fractures based on l bSISSA Library3 aWe study a variant of the variational model for the quasi-static growth of brittle fractures proposed by Francfort and Marigo.9 The main feature of our model is that, in the discrete-time formulation, in each step we do not consider absolute minimizers of the energy, but, in a sense, we look for local minimizers which are sufficiently close to the approximate solution obtained in the previous step. This is done by introducing in the variational problem an additional term which penalizes the L2-distance between the approximate solutions at two consecutive times. We study the continuous-time version of this model, obtained by passing to the limit as the time step tends to zero, and show that it satisfies (for almost every time) some minimality conditions which are slightly different from those considered in Refs. 9 and 8, but are still enough to prove (under suitable regularity assumptions on the crack path) that the classical Griffith\\\'s criterion holds at the crack tips. We also prove that, if no initial crack is present and if the data of the problem are sufficiently smooth, no crack will develop in this model, provided the penalization term is large enough.1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/1963/162101237nas a2200121 4500008004300000245009800043210006900141260001300210520081600223100002101039700001901060856003601079 2002 en_Ud 00aA Model for the Quasi-Static Growth of Brittle Fractures: Existence and Approximation Results0 aModel for the QuasiStatic Growth of Brittle Fractures Existence bSpringer3 aWe give a precise mathematical formulation of a variational model for the irreversible quasi-static evolution of brittle fractures proposed by G.A. Francfort and J.-J. Marigo, and based on Griffith\\\'s theory of crack growth. In the two-dimensional case we prove an existence result for the quasi-static evolution and show that the total energy is an absolutely continuous function of time, although we can not exclude that the bulk energy and the surface energy may present some jump discontinuities. This existence result is proved by a time discretization process, where at each step a global energy minimization is performed, with the constraint that the new crack contains all cracks formed at the previous time steps. This procedure provides an effective way to approximate the continuous time evolution.1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/1963/305600435nas a2200121 4500008004100000245003800041210003700079260001800116520010100134100002100235700002100256856003600277 2001 en d00aGamma-limit of periodic obstacles0 aGammalimit of periodic obstacles bSISSA Library3 aWe compute the Gamma-limit of a sequence obstacle functionals in the case of periodic obstacles.1 aDal Maso, Gianni1 aTrebeschi, Paola uhttp://hdl.handle.net/1963/149501054nas a2200121 4500008004100000245008200041210006900123260001800192520064300210100002100853700002200874856003600896 2001 en d00aA monotonicity approach to nonlinear Dirichlet problems in perforated domains0 amonotonicity approach to nonlinear Dirichlet problems in perfora bSISSA Library3 aWe study the asymptotic behaviour of solutions to Dirichlet problems in perforated domains for nonlinear elliptic equations associated with monotone operators. The main difference with respect to the previous papers on this subject is that no uniformity is assumed in the monotonicity condition. Under a very general hypothesis on the holes of the domains, we construct a limit equation, which is satisfied by the weak limits of the solutions. The additional term in the limit problem depends only on the local behaviour of the holes, which can be expressed in terms of suitable nonlinear capacities associated with the monotone operator.1 aDal Maso, Gianni1 aSkrypnik, Igor V. uhttp://hdl.handle.net/1963/155501109nas a2200121 4500008004100000245009500041210006900136260001800205520068400223100002100907700002300928856003600951 2001 en d00aUniqueness of solutions to Hamilton-Jacobi equations arising in the Calculus of Variations0 aUniqueness of solutions to HamiltonJacobi equations arising in t bSISSA Library3 aWe prove the uniqueness of the viscosity solution to the Hamilton-Jacobi equation associated with a Bolza problem of the Calculus of Variations, assuming that the Lagrangian is autonomous, continuous, superlinear, and satisfies the usual convexity hypothesis. Under the same assumptions we prove also the uniqueness, in a class of lower semicontinuous functions, of a slightly different notion of solution, where classical derivatives are replaced only by subdifferentials. These results follow from a new comparison theorem for lower semicontinuous viscosity supersolutions of the Hamilton-Jacobi equation, that is proved in the general case of lower semicontinuous Lagrangians.1 aDal Maso, Gianni1 aFrankowska, Helene uhttp://hdl.handle.net/1963/151500508nas a2200109 4500008004100000245005900041210005500100260001800155520016800173100002100341856003600362 2000 en d00aThe Calibration Method for Free Discontinuity Problems0 aCalibration Method for Free Discontinuity Problems bSISSA Library3 aThe calibration method is used to identify some minimizers of the Mumford-Shah functional. The method is then extended to more general free discontinuity problems.1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/149600462nas a2200121 4500008004100000245010500041210006900146260001800215100002100233700002500254700002500279856003600304 2000 en d00aLocal calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity sets0 aLocal calibrations for minimizers of the MumfordShah functional bSISSA Library1 aDal Maso, Gianni1 aMora, Maria Giovanna1 aMorini, Massimiliano uhttp://hdl.handle.net/1963/126100421nas a2200109 4500008004100000245010300041210006900144260001800213100002100231700002300252856003600275 2000 en d00aValue Functions for Bolza Problems with Discontinuous Lagrangians and Hamilton-Jacobi inequalities0 aValue Functions for Bolza Problems with Discontinuous Lagrangian bSISSA Library1 aDal Maso, Gianni1 aFrankowska, Helene uhttp://hdl.handle.net/1963/151400405nas a2200109 4500008004100000020001400041245009200055210006900147100002100216700002200237856003600259 1999 en d a1618-189100aAsymptotic behaviour of nonlinear elliptic higher order equations in perforated domains0 aAsymptotic behaviour of nonlinear elliptic higher order equation1 aDal Maso, Gianni1 aSkrypnik, Igor V. uhttp://hdl.handle.net/1963/643300703nas a2200133 4500008004100000245005900041210005400100260001300154520030400167100002200471700001900493700002100512856003600533 1999 en d00aThe calibration method for the Mumford-Shah functional0 acalibration method for the MumfordShah functional bElsevier3 aIn this Note we adapt the calibration method to functionals of Mumford-Shah type, and provide a criterion (Theorem 1) to verify that a given function is energy minimizing. Among other applications, we use this criterion to show that certain triple-junction configurations are minimizing (Example 3).1 aAlberti, Giovanni1 aBouchitte, Guy1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/123500394nas a2200109 4500008004300000245007500043210006900118260001700187100002300204700002100227856003600248 1999 en_Ud 00aDiscrete approximation of the Mumford-Shah functional in dimension two0 aDiscrete approximation of the MumfordShah functional in dimensio bEDP Sciences1 aChambolle, Antonin1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/358800336nas a2200109 4500008004100000245004800041210004700089260001000136100002100146700002300167856003600190 1999 en d00aEvans-Vasilesco theorem in Dirichlet spaces0 aEvansVasilesco theorem in Dirichlet spaces bSISSA1 aDal Maso, Gianni1 aDe Cicco, Virginia uhttp://hdl.handle.net/1963/643600817nas a2200133 4500008004100000245009500041210006900136260001000205520036300215100002100578700002700599700002100626856003600647 1999 en d00aA Lipschitz selection from the set of minimizers of a nonconvex functional of the gradient0 aLipschitz selection from the set of minimizers of a nonconvex fu bSISSA3 aA constructive and improved version of the proof that there exist a continuous map that solves the convexified problem is presented. A Lipschitz continuous map is analyzed such that a map vector minimizes the functional at each vector satisfying Cellina\\\'s condition of existence of minimum. This map is explicitly given by a direct constructive algorithm.1 aDal Maso, Gianni1 aGoncharov, Vladimir V.1 aOrnelas, Antonio uhttp://hdl.handle.net/1963/643900470nas a2200133 4500008004100000245007500041210006900116260003700185100002100222700002000243700001800263700001900281856003600300 1999 en d00aRenormalized solutions of elliptic equations with general measure data0 aRenormalized solutions of elliptic equations with general measur bScuola Normale Superiore di Pisa1 aDal Maso, Gianni1 aMurat, Francois1 aOrsina, Luigi1 aPrignet, Alain uhttp://hdl.handle.net/1963/123600363nas a2200097 4500008004100000245007600041210006900117100002200186700002100208856003600229 1999 en d00aSome properties of the solutions of obstacle problems with measure data0 aSome properties of the solutions of obstacle problems with measu1 aDall'Aglio, Paolo1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/643201405nas a2200133 4500008004300000245009900043210006900142260001300211520094900224100002001173700002101193700002101214856003601235 1999 en_Ud 00aVariational formulation of softening phenomena in fracture mechanics. The one-dimensional case0 aVariational formulation of softening phenomena in fracture mecha bSpringer3 aStarting from experimental evidence, the authors justify a variational model for softening phenomena in fracture of one-dimensional bars where the energy is given by the contribution and interaction of two terms: a typical bulk energy term depending on elastic strain and a discrete part that depends upon the jump discontinuities that occur in fracture. A more formal, rigorous derivation of the model is presented by examining the $\\\\Gamma$-convergence of discrete energy functionals associated to an array of masses and springs. Close attention is paid to the softening and fracture regimes. \\nOnce the continuous model is derived, it is fully analyzed without losing sight of its discrete counterpart. In particular, the associated boundary value problem is studied and a detailed analysis of the stationary points under the presence of a dead load is performed. A final, interesting section on the scale effect on the model is included.1 aBraides, Andrea1 aDal Maso, Gianni1 aGarroni, Adriana uhttp://hdl.handle.net/1963/337100395nas a2200109 4500008004100000245007800041210006900119260001800188100002100206700002200227856003600249 1998 en d00aAsymptotic behavior of nonlinear Dirichlet problems in perforated domains0 aAsymptotic behavior of nonlinear Dirichlet problems in perforate bSISSA Library1 aDal Maso, Gianni1 aSkrypnik, Igor V. uhttp://hdl.handle.net/1963/106400455nas a2200133 4500008004100000245007400041210006900115260001000184100002100194700002300215700002300238700002400261856003600285 1998 en d00aLimits of variational problems for Dirichlet forms in varying domains0 aLimits of variational problems for Dirichlet forms in varying do bSISSA1 aDal Maso, Gianni1 aDe Cicco, Virginia1 aNotarantonio, Lino1 aTchou, Nicoletta A. uhttp://hdl.handle.net/1963/644000833nas a2200121 4500008004100000245004300041210004300084260001300127520049300140100002100633700002200654856003500676 1997 en d00aCapacity theory for monotone operators0 aCapacity theory for monotone operators bSpringer3 aIf $Au=-div(a(x,Du))$ is a monotone operator defined on the Sobolev space $W^{1,p}(R^n)$, $1< p <+\\\\infty$, with $a(x,0)=0$ for a.e. $x\\\\in R^n$, the capacity $C_A(E,F)$ relative to $A$ can be defined for every pair $(E,F)$ of bounded sets in $R^n$ with $E\\\\subset F$. We prove that $C_A(E,F)$ is increasing and countably subadditive with respect to $E$ and decreasing with respect to $F$. Moreover we investigate the continuity properties of $C_A(E,F)$ with respect to $E$ and $F$.1 aDal Maso, Gianni1 aSkrypnik, Igor V. uhttp://hdl.handle.net/1963/91100323nas a2200085 4500008004100000245007000041210006900111100002100180856003600201 1997 it d00aComportamento asintotico delle soluzioni di problemi di Dirichlet0 aComportamento asintotico delle soluzioni di problemi di Dirichle1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/643800401nas a2200109 4500008004100000245009300041210006900134260001000203100002100213700002100234856003600255 1997 en d00aSome properties of reachable solutions of nonlinear elliptic equations with measure data0 aSome properties of reachable solutions of nonlinear elliptic equ bSISSA1 aDal Maso, Gianni1 aMalusa, Annalisa uhttp://hdl.handle.net/1963/643400411nas a2200109 4500008004100000245009800041210006900139260001800208100002100226700001900247856003500266 1996 en d00aA capacity method for the study of Dirichlet problems for elliptic systems in varying domains0 acapacity method for the study of Dirichlet problems for elliptic bSISSA Library1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/1963/98900323nas a2200097 4500008004100000245005500041210005500096260001800151100002100169856003500190 1995 en d00aCapacity and Dirichlet problems in varying domains0 aCapacity and Dirichlet problems in varying domains bSISSA Library1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/95000375nas a2200121 4500008004100000245004500041210004500086260001800131100002500149700002300174700002100197856003500218 1995 en d00aSpecial functions of bounded deformation0 aSpecial functions of bounded deformation bSISSA Library1 aBellettini, Giovanni1 aCoscia, Alessandra1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/97800448nas a2200109 4500008004300000245007400043210006900117260007600186100002100262700001900283856003600302 1994 en_Ud 00aLimits of Dirichlet problems in perforated domains: a new formulation0 aLimits of Dirichlet problems in perforated domains a new formula bUniversità degli Studi di Trieste, Dipartimento di Scienze Matematiche1 aDal Maso, Gianni1 aToader, Rodica uhttp://hdl.handle.net/1963/364900433nas a2200121 4500008004100000245008300041210006900124260001800193100002100211700002300232700002100255856003500276 1992 en d00aA variational method in image segmentation: existence and approximation result0 avariational method in image segmentation existence and approxima bSISSA Library1 aDal Maso, Gianni1 aMorel, Jean-Michel1 aSolimini, Sergio uhttp://hdl.handle.net/1963/80800410nas a2200109 4500008004100000245009300041210006900134260001800203100002300221700002100244856003500265 1991 en d00aShape optimization for Dirichlet problems: relaxed formulations and optimally conditions0 aShape optimization for Dirichlet problems relaxed formulations a bSISSA Library1 aButtazzo, Giuseppe1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/88000391nas a2200109 4500008004100000245007600041210006900117260001800186100002100204700002100225856003500246 1991 en d00aOn systems of ordinary differential equations with measures as controls0 asystems of ordinary differential equations with measures as cont bSISSA Library1 aDal Maso, Gianni1 aRampazzo, Franco uhttp://hdl.handle.net/1963/84000375nas a2200109 4500008004100000245006100041210006100102260001800163100002100181700002800202856003500230 1990 en d00aCorrectors for the homogeneization of monotone operators0 aCorrectors for the homogeneization of monotone operators bSISSA Library1 aDal Maso, Gianni1 aDefranceschi, Anneliese uhttp://hdl.handle.net/1963/81200370nas a2200121 4500008004100000245004000041210003900081260001800120100002600138700002100164700002800185856003500213 1990 en d00aG-convergence of monotone operators0 aGconvergence of monotone operators bSISSA Library1 aChiadò Piat, Valeria1 aDal Maso, Gianni1 aDefranceschi, Anneliese uhttp://hdl.handle.net/1963/68000355nas a2200109 4500008004100000245005600041210005400097260001800151100002000169700002100189856003500210 1990 en d00aA general chain rule for distributional derivatives0 ageneral chain rule for distributional derivatives bSISSA Library1 aAmbrosio, Luigi1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/65000408nas a2200109 4500008004100000245009100041210006900132260001800201100002300219700002100242856003500263 1990 en d00aShape optimization for Dirichlet problems: relaxed solutions and optimality conditions0 aShape optimization for Dirichlet problems relaxed solutions and bSISSA Library1 aButtazzo, Giuseppe1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/80900407nas a2200109 4500008004100000245009300041210006900134260001800203100002100221700002000242856003500262 1989 en d00aAn approach to the thin obstacle problem for variational functionals depending on vector0 aapproach to the thin obstacle problem for variational functional bSISSA Library1 aDal Maso, Gianni1 aMusina, Roberta uhttp://hdl.handle.net/1963/80200377nas a2200109 4500008004100000245006200041210006200103260001800165100002100183700002800204856003500232 1989 en d00aConvergence of unilateral problems for monotone operators0 aConvergence of unilateral problems for monotone operators bSISSA Library1 aDal Maso, Gianni1 aDefranceschi, Anneliese uhttp://hdl.handle.net/1963/72200424nas a2200133 4500008004100000245005700041210005600098260001800154100002100172700002200193700001900215700002100234856003500255 1989 en d00aLimits of obstacle problems for the area functional.0 aLimits of obstacle problems for the area functional bSISSA Library1 aDal Maso, Gianni1 aCarriero, Michele1 aLeaci, Antonio1 aPascali, Eduardo uhttp://hdl.handle.net/1963/57700407nas a2200121 4500008004100000245006300041210006000104260001800164100002100182700001900203700002800222856003500250 1989 en d00aA pointwise regularity theory for the two-obstacle problem0 apointwise regularity theory for the twoobstacle problem bSISSA Library1 aDal Maso, Gianni1 aMosco, Umberto1 aVivaldi, Maria Agostina uhttp://hdl.handle.net/1963/64300332nas a2200109 4500008004100000245004100041210003800082260001800120100002100138700002800159856003500187 1988 en d00aA Kellogg property for µ-capacities0 aKellogg property for µcapacities bSISSA Library1 aDal Maso, Gianni1 aDefranceschi, Anneliese uhttp://hdl.handle.net/1963/49200693nas a2200121 4500008004100000245006300041210006200104260001800166520030300184100002100487700002800508856003500536 1988 en d00aLimits of nonlinear Dirichlet problems in varying domains.0 aLimits of nonlinear Dirichlet problems in varying domains bSISSA Library3 aWe study the general form of the limit, in the sense of gamma-convergence, of a sequence of nonlinear variational problems in varying domains with Dirichlet boudary conditions. The asymptotic problem is characterized in terms of the limit of suitable nonlinear capacities associated to the domains.1 aDal Maso, Gianni1 aDefranceschi, Anneliese uhttp://hdl.handle.net/1963/53600392nas a2200109 4500008004100000245007100041210006800112260001800180100002100198700002800219856003500247 1988 en d00aSome properties of a class of nonlinear variational $m$-capacities0 aSome properties of a class of nonlinear variational mcapacities bSISSA Library1 aDal Maso, Gianni1 aDefranceschi, Anneliese uhttp://hdl.handle.net/1963/48500399nas a2200109 4500008004100000245008200041210006900123260001800192100002100210700002300231856003500254 1988 en d00aVariational inequalities for the biharmonic operator with variable obstacles.0 aVariational inequalities for the biharmonic operator with variab bSISSA Library1 aDal Maso, Gianni1 aPaderni, Gabriella uhttp://hdl.handle.net/1963/53100371nas a2200109 4500008004100000245006200041210006100103260001800164100002100182700002300203856003500226 1987 en d00aIntegral representation of some convex local functionals.0 aIntegral representation of some convex local functionals bSISSA Library1 aDal Maso, Gianni1 aPaderni, Gabriella uhttp://hdl.handle.net/1963/49700395nas a2200109 4500008004100000245007300041210006900114260001800183100002100201700002800222856003500250 1987 en d00aLimits of nonlinear Dirichlet problems in varying domains. (Italian)0 aLimits of nonlinear Dirichlet problems in varying domains Italia bSISSA Library1 aDal Maso, Gianni1 aDefranceschi, Anneliese uhttp://hdl.handle.net/1963/48600371nas a2200097 4500008004100000245008900041210006900130260001800199100002100217856003500238 1986 en d00aConvergence of unilateral convex sets. Optimization and related fields (Erice, 1984)0 aConvergence of unilateral convex sets Optimization and related f bSISSA Library1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/35300389nas a2200121 4500008004100000245005200041210005200093260001800145100002500163700002300188700002100211856003500232 1986 en d00aDirichlet problems for demicoercive functionals0 aDirichlet problems for demicoercive functionals bSISSA Library1 aAnzellotti, Gabriele1 aButtazzo, Giuseppe1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/39000386nas a2200097 4500008004100000245010400041210006900145260001800214100002100232856003500253 1985 en d00aSome necessary and sufficient conditions for the convergence of sequences of unilateral convex sets0 aSome necessary and sufficient conditions for the convergence of bSISSA Library1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/31800353nas a2200097 4500008004100000245007100041210006900112260001800181100002100199856003500220 1985 en d00aSome singular perturbation problems in the calculus of variations.0 aSome singular perturbation problems in the calculus of variation bSISSA Library1 aDal Maso, Gianni uhttp://hdl.handle.net/1963/29700419nas a2200121 4500008004100000245007200041210006900113260001800182100002100200700002100221700002000242856003500262 1985 en d00aWeak convergence of measures on spaces of semicontinuous functions.0 aWeak convergence of measures on spaces of semicontinuous functio bSISSA Library1 aDal Maso, Gianni1 aDe Giorgi, Ennio1 aModica, Luciano uhttp://hdl.handle.net/1963/463