01129nas a2200133 4500008004100000245005300041210004600094260001800140520073800158100002000896700002000916700002300936856003600959 2002 en d00aOn the reachability of quantized control systems0 areachability of quantized control systems bSISSA Library3 aIn this paper, we study control systems whose input sets are quantized, i.e., finite or regularly distributed on a mesh. We specifically focus on problems relating to the structure of the reachable set of such systems, which may turn out to be either dense or discrete. We report results on the reachable set of linear quantized systems, and on a particular but interesting class of nonlinear systems, i.e., nonholonomic chained-form systems. For such systems, we provide a complete characterization of the reachable set, and, in case the set is discrete, a computable method to completely and succinctly describe its structure. Implications and open problems in the analysis and synthesis of quantized control systems are addressed.1 aBicchi, Antonio1 aMarigo, Alessia1 aPiccoli, Benedetto uhttp://hdl.handle.net/1963/150100415nas a2200133 4500008004100000020001800041245005500059210005500114260001300169100002000182700002300202700002000225856003600245 2000 en d a0-08-043658-700aQuantized control systems and discrete nonholonomy0 aQuantized control systems and discrete nonholonomy bElsevier1 aMarigo, Alessia1 aPiccoli, Benedetto1 aBicchi, Antonio uhttp://hdl.handle.net/1963/150201019nas a2200133 4500008004300000245006700043210006700110260000900177520060000186100002000786700002300806700002000829856003600849 2000 en_Ud 00aReachability Analysis for a Class of Quantized Control Systems0 aReachability Analysis for a Class of Quantized Control Systems bIEEE3 aWe study control systems whose input sets are quantized. We specifically focus on problems relating to the structure of the reachable set of such systems, which may turn out to be either dense or discrete. We report on some results on the reachable set of linear quantized systems, and study in detail an interesting class of nonlinear systems, forming the discrete counterpart of driftless nonholonomic continuous systems. For such systems, we provide a complete characterization of the reachable set, and, in the case the set is discrete, a computable method to describe its lattice structure.1 aMarigo, Alessia1 aPiccoli, Benedetto1 aBicchi, Antonio uhttp://hdl.handle.net/1963/3518