01002nas a2200133 4500008004100000245006100041210006000102520056900162100002200731700002100753700001900774700002700793856004800820 2018 en d00aStochastic homogenisation of free-discontinuity problems0 aStochastic homogenisation of freediscontinuity problems3 aIn this paper we study the stochastic homogenisation of free-discontinuity functionals. Assuming stationarity for the random volume and surface integrands, we prove the
existence of a homogenised random free-discontinuity functional, which is deterministic in the ergodic case. Moreover, by establishing a connection between the deterministic convergence of the functionals at any fixed realisation and the pointwise Subadditive Ergodic Theorem by Akcoglou and Krengel, we characterise the limit volume and surface integrands in terms of asymptotic cell formulas.1 aCagnetti, Filippo1 aDal Maso, Gianni1 aScardia, Lucia1 aZeppieri, Caterina Ida uhttp://preprints.sissa.it/handle/1963/3530901393nas a2200145 4500008004100000245005300041210005100094260001000145520095500155100002201110700002101132700001901153700002701172856004801199 2017 en d00aGamma-Convergence of Free-discontinuity problems0 aGammaConvergence of Freediscontinuity problems bSISSA3 aWe study the Gamma-convergence of sequences of free-discontinuity functionals depending on vector-valued functions u which can be discontinuous across hypersurfaces whose shape and location are not known a priori. The main novelty of our result is that we work under very general assumptions on the integrands which, in particular, are not required to be periodic in the space variable. Further, we consider the case of surface integrands which are not bounded from below by the amplitude of the jump of u. We obtain three main results: compactness with respect to Gamma-convergence, representation of the Gamma-limit in an integral form and identification of its integrands, and homogenisation formulas without periodicity assumptions. In particular, the classical case of periodic homogenisation follows as a by-product of our analysis. Moreover, our result covers also the case of stochastic homogenisation, as we will show in a forthcoming paper.1 aCagnetti, Filippo1 aDal Maso, Gianni1 aScardia, Lucia1 aZeppieri, Caterina Ida uhttp://preprints.sissa.it/handle/1963/3527600903nas a2200133 4500008004100000245009000041210006900131260001000200520043700210100002100647700002400668700002700692856005000719 2015 en d00aA bridging mechanism in the homogenisation of brittle composites with soft inclusions0 abridging mechanism in the homogenisation of brittle composites w bSISSA3 aWe provide a homogenisation result for the energy-functional associated with a purely brittle composite whose microstructure is characterised by soft periodic inclusions embedded in a stiffer matrix. We show that the two constituents as above can be suitably arranged on a microscopic scale ε to obtain, in the limit as ε tends to zero, a homogeneous macroscopic energy-functional explicitly depending on the opening of the crack.1 aBarchiesi, Marco1 aLazzaroni, Giuliano1 aZeppieri, Caterina Ida uhttp://urania.sissa.it/xmlui/handle/1963/749200423nas a2200133 4500008004100000245005600041210005500097260001300152653002200165100001800187700002100205700002700226856003600253 2014 en d00aNew results on Gamma-limits of integral functionals0 aNew results on Gammalimits of integral functionals bElsevier10aGamma-convergence1 aAnsini, Nadia1 aDal Maso, Gianni1 aZeppieri, Caterina Ida uhttp://hdl.handle.net/1963/588000456nas a2200133 4500008004100000245006900041210006700110260001300177653003000190100001800220700002100238700002700259856003600286 2012 en d00aGamma-convergence and H-convergence of linear elliptic operators0 aGammaconvergence and Hconvergence of linear elliptic operators bElsevier10aLinear elliptic operators1 aAnsini, Nadia1 aDal Maso, Gianni1 aZeppieri, Caterina Ida uhttp://hdl.handle.net/1963/587800629nas a2200121 4500008004300000245007900043210006900122260002200191520021000213100002100423700002700444856003600471 2010 en_Ud 00aHomogenization of fiber reinforced brittle material: the intermediate case0 aHomogenization of fiber reinforced brittle material the intermed bWalter de Gruyter3 aWe derive a cohesive fracture model by homogenizing a periodic composite material whose microstructure is characterized by the presence of brittle inclusions in a reticulated unbreakable elastic structure.1 aDal Maso, Gianni1 aZeppieri, Caterina Ida uhttp://hdl.handle.net/1963/360701141nas a2200133 4500008004300000245014200043210006900185260004800254520060000302100002000902700002200922700002700944856003600971 2009 en_Ud 00aDiscrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers0 aDiscretetocontinuum limits for strainalignmentcoupled systems Ma bAmerican Institute of Mathematical Sciences3 aIn the framework of linear elasticity, we study the limit of a class of discrete free energies modeling strain-alignment-coupled systems by a rigorous coarse-graining procedure, as the number of molecules diverges. We focus on three paradigmatic examples: magnetostrictive solids, ferroelectric crystals and nematic elastomers, obtaining in the limit three continuum models consistent with those commonly employed in the current literature. We also derive the correspondent macroscopic energies in the presence of displacement boundary conditions and of various kinds of applied external fields.1 aCicalese, Marco1 aDeSimone, Antonio1 aZeppieri, Caterina Ida uhttp://hdl.handle.net/1963/3788