TY - JOUR
T1 - Categorial mirror symmetry for K3 surfaces
JF - Comm. Math. Phys. 206 (1999) 265-272
Y1 - 1999
A1 - Claudio Bartocci
A1 - Ugo Bruzzo
A1 - Guido Sanguinetti
AB - We study the structure of a modified Fukaya category ${\\\\frak F}(X)$ associated with a K3 surface $X$, and prove that whenever $X$ is an elliptic K3 surface with a section, the derived category of $\\\\fF(X)$ is equivalent to a subcategory of the derived category ${\\\\bold D}(\\\\hat X)$ of coherent sheaves on the mirror K3 surface $\\\\hat X$.
PB - Springer
UR - http://hdl.handle.net/1963/2887
U1 - 1813
U2 - Mathematics
U3 - Mathematical Physics
ER -