TY - JOUR T1 - Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system JF - Advances in Computational Mathematics Y1 - 2015 A1 - Immanuel Martini A1 - Gianluigi Rozza A1 - Bernard Haasdonk KW - Domain decomposition KW - Error estimation KW - Non-coercive problem KW - Porous medium equation KW - Reduced basis method KW - Stokes flow AB -

The coupling of a free flow with a flow through porous media has many potential applications in several fields related with computational science and engineering, such as blood flows, environmental problems or food technologies. We present a reduced basis method for such coupled problems. The reduced basis method is a model order reduction method applied in the context of parametrized systems. Our approach is based on a heterogeneous domain decomposition formulation, namely the Stokes-Darcy problem. Thanks to an offline/online-decomposition, computational times can be drastically reduced. At the same time the induced error can be bounded by fast evaluable a-posteriori error bounds. In the offline-phase the proposed algorithms make use of the decomposed problem structure. Rigorous a-posteriori error bounds are developed, indicating the accuracy of certain lifting operators used in the offline-phase as well as the accuracy of the reduced coupled system. Also, a strategy separately bounding pressure and velocity errors is extended. Numerical experiments dealing with groundwater flow scenarios demonstrate the efficiency of the approach as well as the limitations regarding a-posteriori error estimation.

VL - special issue for MoRePaS 2012 IS - in press ER -