In this paper we study the regularity of viscosity solutions to the following Hamilton-Jacobi equations $$ \partial_t u + H(D_{x} u)=0 \qquad \textrm{in}\quad \Omega\subset \mathbb{R}\times \mathbb{R}^{n} . $$ In particular, under the assumption that the Hamiltonian $H\in C^2(\mathbb{R}^n)$ is uniformly convex, we prove that $D_{x}u$ and $\partial_t u$ belong to the class $SBV_{loc}(\Omega)$.

PB - Springer UR - http://hdl.handle.net/1963/4911 U1 - 4695 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER - TY - RPRT T1 - Structure of level sets and Sard-type properties of Lipschitz maps Y1 - 2011 A1 - Giovanni Alberti A1 - Stefano Bianchini A1 - Gianluca Crippa PB - SISSA UR - http://hdl.handle.net/1963/4657 U1 - 4424 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER - TY - RPRT T1 - A uniqueness result for the continuity equation in two dimensions Y1 - 2011 A1 - Giovanni Alberti A1 - Stefano Bianchini A1 - Gianluca Crippa PB - SISSA UR - http://hdl.handle.net/1963/4663 U1 - 4425 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER - TY - JOUR T1 - Estimates on path functionals over Wasserstein Spaces JF - SIAM J. Math. Anal. 42 (2010) 1179-1217 Y1 - 2010 A1 - Stefano Bianchini A1 - Alessio Brancolini AB - In this paper we consider the class a functionals (introduced in [Brancolini, Buttazzo, and Santambrogio, J. Eur. Math. Soc. (JEMS), 8 (2006), pp. 415-434] $\\\\mathcal{G}_{r,p}$ defined on Lipschitz curves $\\\\gamma$ valued in the $p$-Wasserstein space. The problem considered is the following: given a measure $\\\\mu$, give conditions in order to assure the existence of a curve $\\\\gamma$ such that $\\\\gamma(0)=\\\\mu$, $\\\\gamma(1)=\\\\delta_{x_0}$, and $\\\\mathcal{G}_{r,p}(\\\\gamma)<+\\\\infty$. To this end, new estimates on $\\\\mathcal{G}_{r,p}(\\\\mu)$ are given, and a notion of dimension of a measure (called path dimension) is introduced: the path dimension specifies the values of the parameters $(r,p)$ for which the answer to the previous reachability problem is positive. Finally, we compare the path dimension with other known dimensions. UR - http://hdl.handle.net/1963/3583 U1 - 717 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - On the Euler-Lagrange equation for a variational problem : the general case II JF - Math. Z. 265 (2010) 889-923 Y1 - 2010 A1 - Stefano Bianchini A1 - Matteo Gloyer UR - http://hdl.handle.net/1963/2551 U1 - 1568 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - The Monge problem in geodesic spaces Y1 - 2010 A1 - Stefano Bianchini A1 - Fabio Cavalletti UR - http://hdl.handle.net/1963/3873 U1 - 836 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - On optimality of c-cyclically monotone transference plans JF - Comptes Rendus Mathematique 348 (2010) 613-618 Y1 - 2010 A1 - Stefano Bianchini A1 - Laura Caravenna AB - Abstract. This note deals with the equivalence between the optimality of a transport plan for the Monge-Kantorovich problem and the condition of c-cyclical monotonicity, as an outcome of the construction in [7]. We emphasize the measurability assumption on the hidden structure of linear preorder, applied also to extremality and uniqueness problems. Resume. Dans la presente note nous decrivons brievement la construction introduite dans [7] a propos de l\\\'equivalence entre l\\\'optimalite d\\\'un plan de transport pour le probleme de Monge-Kantorovich et la condition de monotonie c-cyclique ainsi que d\\\'autres sujets que cela nous amene a aborder. Nous souhaitons mettre en evidence l\\\'hypothese de mesurabilite sur la structure sous-jacente de pre-ordre lineaire. PB - Elsevier UR - http://hdl.handle.net/1963/4023 U1 - 379 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - The boundary Riemann solver coming from the real vanishing viscosity approximation JF - Arch. Ration. Mech. Anal. 191 (2009) 1-96 Y1 - 2009 A1 - Stefano Bianchini A1 - Laura Spinolo AB - We study the limit of the hyperbolic-parabolic approximation $$ \\\\begin{array}{lll} v_t + \\\\tilde{A} ( v, \\\\, \\\\varepsilon v_x ) v_x = \\\\varepsilon \\\\tilde{B}(v ) v_{xx} \\\\qquad v \\\\in R^N\\\\\\\\ \\\\tilde \\\\beta (v (t, \\\\, 0)) = \\\\bar g \\\\\\\\ v (0, \\\\, x) = \\\\bar v_0. \\\\\\\\ \\\\end{array} \\\\right. $$\\nThe function $\\\\tilde \\\\beta$ is defined in such a way to guarantee that the initial boundary value problem is well posed even if $\\\\tilde \\\\beta$ is not invertible.\\nThe data $\\\\bar g$ and $\\\\bar v_0$ are constant. When $\\\\tilde B$ is invertible, the previous problem takes the simpler form $$ \\\\left\\\\{ \\\\begin{array}{lll} v_t + \\\\tilde{A} \\\\big( v, \\\\, \\\\varepsilon v_x \\\\big) v_x = \\\\varepsilon \\\\tilde{B}(v ) v_{xx} \\\\qquad v \\\\in \\\\mathbb{R}^N\\\\\\\\ v (t, \\\\, 0) \\\\equiv \\\\bar v_b \\\\\\\\ v (0, \\\\, x) \\\\equiv \\\\bar{v}_0. \\\\\\\\ \\\\end{array} \\\\right. $$\\nAgain, the data $\\\\bar v_b$ and $\\\\bar v_0$ are constant. The conservative case is included in the previous formulations. It is assumed convergence of the v, smallness of the total variation and other technical hypotheses and it is provided a complete characterization of the limit. The most interesting points are the following two. First, the boundary characteristic case is considered, i.e. one eigenvalue of $\\\\tilde A$ can be 0.\\n Second, as pointed out before we take into account the possibility that $\\\\tilde B$ is not invertible. To deal with this case, we take as hypotheses conditions that were introduced by Kawashima and Shizuta relying on physically meaningful examples. We also introduce a new condition of block linear degeneracy. We prove that, if it is not satisfied, then pathological behaviours may occur. UR - http://hdl.handle.net/1963/1831 U1 - 2385 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A connection between viscous profiles and singular ODEs JF - Rend. Istit. Mat. Univ. Trieste 41 (2009) 35-41 Y1 - 2009 A1 - Stefano Bianchini A1 - Laura Spinolo UR - http://hdl.handle.net/1963/2555 U1 - 1564 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - On the extremality, uniqueness and optimality of transference plans JF - Bull. Inst. Math. Acad. Sin. (N.S.) 4 (2009) 353-458 Y1 - 2009 A1 - Stefano Bianchini A1 - Laura Caravenna AB - We consider the following standard problems appearing in optimal mass transportation theory: when a transference plan is extremal; when a transference plan is the unique transference plan concentrated on a set A,; when a transference plan is optimal. UR - http://hdl.handle.net/1963/3692 U1 - 613 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - The Monge problem for distance cost in geodesic spaces Y1 - 2009 A1 - Stefano Bianchini A1 - Fabio Cavalletti UR - http://hdl.handle.net/1963/3703 U1 - 602 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - Invariant Manifolds for Viscous Profiles of a Class of Mixed Hyperbolic-Parabolic Systems Y1 - 2008 A1 - Stefano Bianchini A1 - Laura Spinolo UR - http://hdl.handle.net/1963/3400 U1 - 932 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - CHAP T1 - Transport Rays and Applications to Hamilton–Jacobi Equations T2 - Nonlinear PDE’s and Applications : C.I.M.E. Summer School, Cetraro, Italy 2008 / Stefano Bianchini, Eric A. Carlen, Alexander Mielke, Cédric Villani. Eds. Luigi Ambrosio, Giuseppe Savaré. - Berlin : Springer, 2011. - (Lecture Notes in Mathematics ; 20 Y1 - 2008 A1 - Stefano Bianchini A1 - Matteo Gloyer AB - The aim of these notes is to introduce the readers to the use of the Disintegration Theorem for measures as an effective tool for reducing problems in transport equations to simpler ones. The basic idea is to partition Rd into one dimensional sets, on which the problem under consideration becomes one space dimensional (and thus much easier, hopefully). JF - Nonlinear PDE’s and Applications : C.I.M.E. Summer School, Cetraro, Italy 2008 / Stefano Bianchini, Eric A. Carlen, Alexander Mielke, Cédric Villani. Eds. Luigi Ambrosio, Giuseppe Savaré. - Berlin : Springer, 2011. - (Lecture Notes in Mathematics ; 20 PB - Springer SN - 978-3-642-21718-0 UR - http://hdl.handle.net/1963/5463 N1 - This volume collects the notes of the CIME course Nonlinear PDE’s and\\r\\napplications held in Cetraro (Italy) on June 23–28, 2008. The school consisted\\r\\nin 5 series of lectures, delivered by Stefano Bianchini (SISSA, Trieste), Eric A. Carlen (Rutgers University), Alexander Mielke (WIAS, Berlin), Felix Otto (Bonn University), Cedric Villani (Ecole Normale Superieure de Lyon). U1 - 5298 U2 - Mathematics U3 - Functional Analysis and Applications U4 - -1 ER - TY - JOUR T1 - Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy JF - Comm. Pure Appl. Math. 60 (2007) 1559-1622 Y1 - 2007 A1 - Stefano Bianchini A1 - Bernard Hanouzet A1 - Roberto Natalini AB - We study the asymptotic time behavior of global smooth solutions to general entropy dissipative hyperbolic systems of balance law in m space dimensions, under the Shizuta-Kawashima condition. UR - http://hdl.handle.net/1963/1780 U1 - 2764 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - On the Euler-Lagrange equation for a variational problem JF - Discrete Contin. Dynam. Systems A 17 (2007) 449-480 Y1 - 2007 A1 - Stefano Bianchini UR - http://hdl.handle.net/1963/1792 U1 - 2752 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - Perturbation techniques applied to the real vanishing viscosity approximation of an initial boundary value problem Y1 - 2007 A1 - Stefano Bianchini PB - SISSA UR - http://preprints.sissa.it/handle/1963/35315 U1 - 35623 U2 - Mathematics U4 - 1 ER - TY - JOUR T1 - On Bressan\\\'s conjecture on mixing properties of vector fields JF - Self-Similar Solutions of Nonlinear PDE / Ed. Piotr Biler and Grzegorz Karch. - Banach Center Publ. 74 (2006) 13-31 Y1 - 2006 A1 - Stefano Bianchini UR - http://hdl.handle.net/1963/1806 U1 - 2408 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - RPRT T1 - Glimm interaction functional for BGK schemes Y1 - 2006 A1 - Stefano Bianchini UR - http://hdl.handle.net/1963/1770 U1 - 2774 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Vanishing viscosity solutions of nonlinear hyperbolic systems JF - Ann. of Math. 161 (2005) 223-342 Y1 - 2005 A1 - Stefano Bianchini A1 - Alberto Bressan AB - We consider the Cauchy problem for a strictly hyperbolic, $n\\\\times n$ system in one space dimension: $u_t+A(u)u_x=0$, assuming that the initial data has small total variation.\\nWe show that the solutions of the viscous approximations $u_t+A(u)u_x=\\\\ve u_{xx}$ are defined globally in time and satisfy uniform BV estimates, independent of $\\\\ve$. Moreover, they depend continuously on the initial data in the $\\\\L^1$ distance, with a Lipschitz constant independent of $t,\\\\ve$. Letting $\\\\ve\\\\to 0$, these viscous solutions converge to a unique limit, depending Lipschitz continuously on the initial data. In the conservative case where $A=Df$ is the Jacobian of some flux function $f:\\\\R^n\\\\mapsto\\\\R^n$, the vanishing viscosity limits are precisely the unique entropy weak solutions to the system of conservation laws $u_t+f(u)_x=0$. PB - Annals of Mathematics UR - http://hdl.handle.net/1963/3074 U1 - 1259 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A note on singular limits to hyperbolic systems of conservation laws JF - Commun. Pure Appl. Ana., 2003, 2, 51-64 Y1 - 2003 A1 - Stefano Bianchini AB - In this note we consider two different singular limits to hyperbolic system of conservation laws, namely the standard backward schemes for non linear semigroups and the semidiscrete scheme. \\nUnder the assumption that the rarefaction curve of the corresponding hyperbolic system are straight lines, we prove the stability of the solution and the convergence to the perturbed system to the unique solution of the limit system for initial data with small total variation. PB - SISSA Library UR - http://hdl.handle.net/1963/1542 U1 - 2621 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A center manifold technique for tracing viscous waves JF - Commun. Pure Appl. Anal. 1 (2002) 161-190 Y1 - 2002 A1 - Stefano Bianchini A1 - Alberto Bressan AB - In this paper we introduce a new technique for tracing viscous travelling profiles. To illustrate the method, we consider a special 2 x 2 hyperbolic system of conservation laws with viscosity, and show that any solution can be locally decomposed as the sum of 2 viscous travelling profiles. This yields the global existence, stability and uniform BV bounds for every solution with suitably small BV data. PB - American Institute of Mathematical Sciences UR - http://hdl.handle.net/1963/3075 U1 - 1258 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - On a Lyapunov functional relating shortening curves and viscous conservation laws JF - Nonlinear Anal. 51 (2002) 649-662 Y1 - 2002 A1 - Stefano Bianchini A1 - Alberto Bressan AB - We study a nonlinear functional which controls the area swept by a curve moving in the plane in the direction of curvature. In turn, this yields a priori estimates on solutions to a class of parabolic equations and of scalar viscous conservation laws. A further application provides an estimate on the \\\"change of shape\\\" of a BV solution to a scalar conservation law. PB - Elsevier UR - http://hdl.handle.net/1963/1337 U1 - 3118 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - On the Stability of the Standard Riemann Semigroup JF - P. Am. Math. Soc., 2002, 130, 1961 Y1 - 2002 A1 - Stefano Bianchini A1 - Rinaldo M. Colombo PB - SISSA Library UR - http://hdl.handle.net/1963/1528 U1 - 2635 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A case study in vanishing viscosity JF - Discrete Cont. Dyn. Syst. 7 (2001) 449-476 Y1 - 2001 A1 - Stefano Bianchini A1 - Alberto Bressan PB - American Institute of Mathematical Sciences UR - http://hdl.handle.net/1963/3091 U1 - 1242 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - A Glimm type functional for a special Jin-Xin relaxation model JF - Ann. Inst. H. Poincare\\\' Anal. Non Lineaire 18 (2001), no. 1, 19-42 Y1 - 2001 A1 - Stefano Bianchini PB - Elsevier UR - http://hdl.handle.net/1963/1355 U1 - 3100 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Stability of L-infinity solutions for hyperbolic systems with coinciding shocks and rarefactions JF - Siam J. Math. Anal., 2001, 33, 959 Y1 - 2001 A1 - Stefano Bianchini AB - We consider a hyperbolic system of conservation laws u_t + f(u)_x = 0 and u(0,\\\\cdot) = u_0, where each characteristic field is either linearly degenerate or genuinely nonlinear. Under the assumption of coinciding shock and rarefaction curves and the existence of a set of Riemann coordinates $w$, we prove that there exists a semigroup of solutions $u(t) = \\\\mathcal{S}_t u_0$, defined on initial data $u_0 \\\\in L^\\\\infty$. The semigroup $\\\\mathcal{S}$ is continuous w.r.t. time and the initial data $u_0$ in the $L^1_{\\\\text{loc}}$ topology. Moreover $\\\\mathcal{S}$ is unique and its trajectories are obtained as limits of wave front tracking approximations. PB - SISSA Library UR - http://hdl.handle.net/1963/1523 U1 - 2640 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - BV solutions for a class of viscous hyperbolic systems JF - Indiana Univ. Math. J. 49 (2000) 1673-1714 Y1 - 2000 A1 - Stefano Bianchini A1 - Alberto Bressan PB - Indiana University Mathematics Journal UR - http://hdl.handle.net/1963/3194 U1 - 1107 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - The semigroup generated by a Temple class system with non-convex flux function JF - Differential Integral Equations 13 (2000) 1529-1550 Y1 - 2000 A1 - Stefano Bianchini AB - We consider the Cauchy problem for a nonlinear n × n system of conservation laws of Temple class, i.e. with coinciding shock and rarefaction curves and with a coordinate system made of Riemann invariants. Without any assumption on the convexity of the flux function, we prove the existence of a semigroup made of weak solutions of the equations and depending Lipschitz continuously on the initial data with bounded total variation. PB - Khayyam Publishing UR - http://hdl.handle.net/1963/3221 U1 - 1080 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - On the shift differentiability of the flow generated by a hyperbolic system of conservation laws JF - Discrete Contin. Dynam. Systems 6 (2000), no. 2, 329-350 Y1 - 2000 A1 - Stefano Bianchini PB - American Institute of Mathematical Sciences UR - http://hdl.handle.net/1963/1274 U1 - 3181 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Extremal faces of the range of a vector measure and a theorem of Lyapunov JF - J. Math. Anal. Appl. 231 (1999) 301-318 Y1 - 1999 A1 - Stefano Bianchini PB - Elsevier UR - http://hdl.handle.net/1963/3370 U1 - 960 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - Vanishing viscosity solutions of hyperbolic systems on manifolds Y1 - 1999 A1 - Stefano Bianchini A1 - Alberto Bressan PB - SISSA Library UR - http://hdl.handle.net/1963/1238 U1 - 2705 U2 - Mathematics U3 - Functional Analysis and Applications ER - TY - JOUR T1 - The vector measures whose range is strictly convex JF - J. Math. Anal. Appl. 232 (1999) 1-19 Y1 - 1999 A1 - Stefano Bianchini A1 - Carlo Mariconda PB - Elsevier UR - http://hdl.handle.net/1963/3546 U1 - 1155 U2 - Mathematics U3 - Functional Analysis and Applications ER -