You are here


Export 50 results:
Filters: First Letter Of Last Name is F  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Fucito F, Morales JF, Poghossian R, Tanzini A. N=1 superpotentials from multi-instanton calculus.; 2006. Available from:
Freddi L, Mora MG, Paroni R. Nonlinear thin-walled beams with a rectangular cross-section - Part II. SISSA; 2011. Available from:
Freddi L, Mora MG, Paroni R. Nonlinear thin-walled beams with a rectangular cross-section-Part I. Math. Models Methods Appl. Sci. 22, 1150016 (2012) [Internet]. 2012 . Available from:
Franco D, Reina C. A Borel-Weil-Bott approach to representations of \rm sl\sb q(2,C). Lett. Math. Phys. 29 (1993) 215-217 [Internet]. 1993 . Available from:
Forti D, Rozza G. Efficient geometrical parametrisation techniques of interfaces for reduced-order modelling: application to fluid–structure interaction coupling problems. International Journal of Computational Fluid Dynamics. 2014 ;28:158–169.
Formaggia L, Miglio E, Mola A, Montano A. A model for the dynamics of rowing boats. International Journal for Numerical Methods in Fluids [Internet]. 2009 ;61:119–143. Available from:
Formaggia L, Miglio E, Mola A, Parolini N. Fluid–structure interaction problems in free surface flows: Application to boat dynamics. International Journal for Numerical Methods in Fluids [Internet]. 2008 ;56:965–978. Available from:
Formaggia L, Mola A, Parolini N, Pischiutta M. A three-dimensional model for the dynamics and hydrodynamics of rowing boats. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology [Internet]. 2010 ;224:51-61. Available from:
Fonseca I, Morini M, Slastikov V. Surfactants in Foam Stability: A Phase-Field Model. Arch. Rational Mech. Anal. 183 (2007) 411-456 [Internet]. 2007 . Available from:
Fonseca I, Leoni G, Maggi F, Morini M. Exact reconstruction of damaged color images using a total variation model. Ann. Inst. H. Poincare Anal. Non Lineaire 27 (2010) 1291-1331 [Internet]. 2010 . Available from:
Fonseca I, Fusco N, Leoni G, Morini M. Equilibrium configurations of epitaxially strained crystalline films: existence and regularity results. Arch. Ration. Mech. Anal. 186 (2007) 477-537 [Internet]. 2007 . Available from:
Fonda A, Gidoni P. A permanence theorem for local dynamical systems.; 2013. Available from:
Fonda A, Gidoni P. Generalizing the Poincaré-Miranda theorem: the avoiding cones condition. [Internet]. 2015 . Available from:
Fonda A, Klun G. On the topological degree of planar maps avoiding normal cones. SISSA; 2019. Available from:
Focardi M, Iurlano F. Ambrosio-Tortorelli approximation of cohesive fracture models in linearized elasticity. SISSA; 2013. Available from:
Feltrin G. A note on a fixed point theorem on topological cylinders. Ann. Mat. Pura Appl. [Internet]. 0 . Available from:
Feltrin G. Positive solutions to indefinite problems: a topological approach. 2016 .
Feltrin G, Zanolin F. Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems. Adv. Differential Equations 20 (2015), 937–982. [Internet]. 2015 . Available from:
Feltrin G, Zanolin F. Multiple positive solutions for a superlinear problem: a topological approach. J. Differential Equations 259 (2015), 925–963. [Internet]. 2015 . Available from:
Fedeli L. Computer simulations of phase field drops on super-hydrophobic surfaces. Journal of Computational Physics [Internet]. 2017 ;344:247 - 259. Available from:
Fedeli L, Turco A, DeSimone A. Metastable equilibria of capillary drops on solid surfaces: a phase field approach. Continuum Mechanics and Thermodynamics [Internet]. 2011 ;23:453–471. Available from:
Fantechi B, Mann E, Nironi F. Smooth toric DM stacks.; 2007. Available from:
Fantechi B, Göttsche L. Riemann-Roch theorems and elliptic genus for virtually smooth schemes. Geom. Topol. 14 (2010) 83-115 [Internet]. 2010 . Available from:
Falqui G, Musso F. On Separation of Variables for Homogeneous SL(r) Gaudin Systems.; 2006. Available from:
Falqui G, Musso F. Quantisation of bending flows. Czechoslovak Journal of Physics 56 (2006), n. 10-11, 1143-1148 [Internet]. 2006 . Available from:


Sign in