Solve at most 5 of the following problems.

Pb. 1) Let \(x_1, \ldots, x_n \) be real numbers. Prove that

1a) \(\sum_{i=1}^{n} x_i^2 = 1 \implies (x_1^2 x_2^2 \cdots x_n^2)^{1/n} \leq 1/n \);

and then deduce that

1b) \(x_i > 0 \) for every \(i \implies (x_1 x_2 \cdots x_n)^{1/n} \leq \frac{x_1 + \cdots x_n}{n} \).

Pb. 2) Let \(f, g : \mathcal{D} \to \mathcal{C} \) be holomorphic. Prove that the condition

\[
|f(z)| \leq |g(z)| \quad (z \in \mathcal{D}),
\]

implies the existence of a constant \(c \) such that, \(f = cg \).

Pb. 3) Let \(H \) a Hilbert space, and for any \(n \geq 1 \) let \(A_n : H \to H \) be a bounded linear operator. Prove that \(\|A_n\| \to 0 \) if the following condition holds:

\(A_n x_n \to 0 \) strongly for every weakly convergent sequence \((x_n)_{n \geq 1} \) in \(H \).

Pb. 4) Let \((f_n)_{n \geq 1} \) be a sequence of real continuous functions defined on \([0, 1]\). Prove that the following conditions are equivalent:

a) \((f_n)_{n \geq 1} \) is equibounded and \(f_n \to 0 \) pointwise;

b) \(\lim_n \int_{[0, 1]} f_n \, d\mu = 0 \) for every Borel measure \(\mu \) which is positive and bounded on \([0, 1]\).

Pb. 5) Let \(X \) be a complete metric space and, for each \(0 \leq \lambda \leq 1 \), let \(T_\lambda : X \to X \) satisfy

\[
d(T_\lambda(x), T_\lambda(y)) \leq \frac{1}{2} d(x, y) \quad (\forall \ x, y, \lambda).
\]

Prove that if \(D \) is a dense subset of \(X \) and for every \(x \in D \)

\[
\lim_{\lambda \to 0} T_\lambda(x) = T_0(x),
\]

then,

\[
\lim_{\lambda \to 0} x_\lambda = x_0,
\]

where \(x_\lambda = T_\lambda(x_\lambda) \).

Pb. 6) In \(L^\infty = L^\infty([0, 1]) \), let \(V \) be the set of all characteristic function \(\chi_E \), with \(E \) running in the set of measurable subsets of \([0, 1]\). Is \(V \) compact in \(L^\infty \)? Justify your answer.
Pb. 7) Let $T : \ell_2 \to \ell_2$ be the linear operator defined by

$$T(x) := \left(\frac{x_n}{n}\right)_{n \geq 1},$$

for every $x = (x_n)_{n \geq 1} \in \ell_2$. Prove that $T(\ell_2)$ is dense in ℓ_2 and differs from ℓ_2 (that is, $\overline{T(\ell_2)} = \ell_2$ and $T(\ell_2) \neq \ell_2$).

Pb. 8) Let $f, f_n : [0, 1] \to \mathbb{R}$ be continuous functions. Assume that for every sequence $(x_n)_{n \geq 1}$ converging to a point $x \in [0, 1]$, we have

$$\lim_n f_n(x_n) = f(x).$$

Prove that f_n converges uniformly to f in $[0, 1]$.

Pb. 9) Let $f : \mathbb{R} \to]0, +\infty[$ be continuous. Prove the uniqueness of the solution to the Cauchy problem

$$x' = f(x), \quad x(t_0) = x_0,$$

for every initial data t_0, x_0.

Pb. 10) Let $f : [0, 1] \times \mathbb{R}^n \to \mathbb{R}^n$ be of class C^1. Let x be the solution to the Cauchy problem

$$x'(t) = f(t, x(t)), \quad x(0) = 0,$$

on $[0, \beta] \subset [0, 1]$. Prove that if x cannot be extended at β as a solution, then for every compact subset $K \subset \mathbb{R}^n$ there exists $t_K < \beta$ such that $x(t) \notin K$ for $t_K < t < \beta$.

2