The candidate should solve at most five of the following exercises.

(1) Consider the ordinary differential equation in polar coordinates

\[
\begin{cases}
\dot{r} = \begin{cases} 0 & r = 0 \\ \sqrt{r} \sin(1/r) & r \neq 0 \end{cases} \\
\dot{\theta} = f(r),
\end{cases}
\]

with $f \in C^1$ and $0 < \alpha \leq f \leq \beta$.

(a) Study the local and global Lipschitzianity of the right hand side of (1), (2).

(b) For initial data $\theta_0 \in [0, 2\pi]$, $r_0 \in [0, +\infty)$, study the local and global existence and uniqueness of the solution.

(2) Consider the differential equation in \mathbb{R}

\[
\dot{x} = x - e^{-t^2}.
\]

Say if there are solutions $x(t)$ such that $x(t) \to 0$ for $t \to \pm\infty$. If the answer is positive, find how many solutions have this property.

(3) Consider the Cauchy problem in \mathbb{R}

\[
\dot{x} = x^2(\alpha + \sin(x)), \quad x(0) = 1.
\]

For every $\alpha \in \mathbb{R}$ give an estimate of the maximal interval of definition of the solution.

(4) Consider the linear system of partial differential equations on the torus \mathbb{T}^2

\[
\begin{align*}
\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} &= \sin(y) - \cos(x) \\
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0,
\end{align*}
\]

- Solve the system explicitly, assuming that

\[
\int_0^{2\pi} \int_0^{2\pi} u(x, y) dxdy = \int_0^{2\pi} \int_0^{2\pi} v(x, y) dxdy = 0.
\]
• Prove that if \(f \) is smooth, periodic and with zero average, the solution to the following system on \(\mathbb{T}^2 \)
\[
\begin{align*}
\frac{\partial u'}{\partial y} - \frac{\partial v'}{\partial x} &= 0 \\
\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} &= f(x, y)
\end{align*}
\]
satisfies
\[
\int_0^{2\pi} \int_0^{2\pi} \left(u(x, y)u'(x, y) + v(x, y)v'(x, y)\right) dx dy = 0.
\]

(5) In the space \(L^\infty((0, 1), \mathbb{R}) \) consider the set
\[
B = \{ u \in L^\infty((0, 1), \mathbb{R}) : 0 \leq u(x) \leq 1 \text{ almost everywhere} \}.
\]
Let \(E \) be the set made of characteristic functions of unions of open intervals of \((0, 1) \) with rational end points. Prove that the closure of the convex envelope of \(E \) in the weak* topology coincides with \(B \).

(6) Consider the map \(f : S^1 \to S^1 \) defined as
\[
f(x) = (3x + 2\sin x)/2\pi, \quad x \in S^1.
\]
Prove that for any open (non-empty) set \(A \subseteq S^1 \) there exists \(k \in \mathbb{N} \) such that \(f \circ f \circ \ldots \circ f(A) = S^1 \) \(k \) times.

(7) Let \(S = \{(v_1, v_2, v_3) \in (0, +\infty)^3 : v_1 v_2 v_3 = 1\} \). Given a positive parameter \(\tau \), consider the function \(f_\tau : S \to \mathbb{R} \) defined by
\[
f_\tau(v_1, v_2, v_3) = \left(v_1^2 + v_2^2 + v_3^2 - 3\right) - \tau(v_1 + v_2 + v_3).
\]
Find the number of critical points of \(f_\tau \) for \(\tau \) varying in \((0, +\infty) \). They represent equilibrium configurations of a cube of incompressible neo-hookean rubber under hydrostatic traction.

(8) Consider the linear operator \(T : L^2([0, 1]) \to L^2([0, 1]) \) given by the formula
\[
(Tf)(x) = \int_0^x f(y) dy \quad \forall f \in L^2([0, 1]).
\]
(a) Prove that the adjoint operator T^* is given by

$$(T^* f)(x) = \int_x^1 f(y) \, dy \quad \forall f \in L^2([0,1]).$$

(b) Prove that

$$(TT^* f)(x) = \int_0^1 \min\{x, y\} f(y) \, dy \quad \forall f \in L^2([0,1]).$$

(c) Compute the spectral radius of TT^* and the norm of T.

(9) (a) Let X be a Banach space and let $A \subset X$ be bounded. Prove that A is pre-compact if and only if for every $\epsilon > 0$ there exists a subspace F_ϵ of X of finite dimension such that

$$\text{dist}(x, F_\epsilon) \leq \epsilon \quad \forall x \in A.$$

(b) Let $(\lambda_n)_{n \in \mathbb{N}}$ be a bounded sequence in \mathbb{R} and consider the linear operator $T : \ell^2 \to \ell^2$ given by

$$(Tu)_n = \lambda_n u_n \quad \forall u = (u_n)_{n \in \mathbb{N}} \in \ell^2.$$

Using if necessary point (a) prove that T is compact if and only if

$$\lim_{n \to \infty} \lambda_n = 0.$$

(10) Let $f : \mathbb{R} \to \mathbb{R}$ be a function of class C^1 such that $f'(x) \geq 0$ for every $x \in \mathbb{R}$ and $f(0) = 0$. Prove that the solution $x(\cdot)$ of the Cauchy problem

$$\begin{cases}
\dot{x} = \frac{1}{1 + tf(x)} \\
x(0) = 0,
\end{cases}$$

is defined on the whole \mathbb{R} and that

$$\lim_{t \to -\infty} x(t) = -\infty, \quad \lim_{t \to +\infty} x(t) = +\infty.$$