MENU

You are here

Mathematical Methods of Condensed Matter Physics

Lecturer: 
Course Type: 
PhD Course
Master Course
Academic Year: 
2019-2020
Period: 
May-June
Duration: 
30 h
Description: 

Topics to be covered include:

-) Introduction to lattice Schroedinger operators.
-) Disordered systems. Anderson localization, supersymmetric mapping.
-) Topological transport, bulk-edge duality.
-) Many-body systems, renormalization group.

References:

-) Aizenman, Graf. Localization bounds for an electron gas. J. Phys. A: Math. Gen. 31 (1998)
-) Aizenman, Warzel. Random operators. AMS.
-) Bauerschmidt, Brydges, Slade. Introduction to a renormalisation group method. Springer.
-) Efetov. Supersymmetry in disorder and chaos. Cambridge University Press.
-) Graf, Porta. Bulk-edge correspondence for two-dimensional topological insulators. Comm. Math. Phys. 324 (2013)
-) Mastropietro. Nonperturbative renormalization. World Scientific.
-) Teschl. Mathematical methods in quantum mechanics. AMS.

 

Lecture period: May 19 - June 26. Duration: 30 hours.

Tuesday, 15:00-17:00

Thursday, 15:00-17:00

There will be two additional lectures, taking place on:

Friday May 29, 10:00-12:00

Friday June 12, 10:00-12:00

 

 

Location: 
TBC(to be checked)

Sign in