Lecturer:
Course Type:
PhD Course
Academic Year:
2015-2016
Period:
May - June
Duration:
20 h
Description:
An advanced course dedicate to the analysis of finite element methods, as found in modern numerical analysis literature. A basic knowledge of Sobolev spaces is expected.
Detailed program
- Review of basic results for Finite Element Analysis (Galerkin method) (2h)
- Lax Milgram Lemma, Cea’s Lemma, Bramble Hilbert Lemma
- Inverse estimates, trace estimates
- Petrov-Galerkin finite element methods (2h)
- Ladyzhhenskaya, Brezzi, Babuska VS Lax Milgram
- Mixed and hybrid finite element methods (4h)
- Mixed Laplace Problem
- Stokes Problem
- A priori error estimates (exploiting Strang Lemmas)
- Proving the inf-sup (Fortin’s trick, macroelement technique)
- Stabilization mechanisms for Finite Element Methods (2h)
- Diffusion-Transport-Reaction equations
- Strongly consistent stabilizations (Galerkin Least Square (GLS), and Streamline Upwind Petrov Galerkin (SUPG) methods)
- A posteriori error estimates (2h)
- Residual based estimates
- L2 a posteriori estimates
- Variational Crimes, or Discontinuous Galerkin Methods
- Analysis of Discontinuous Galerkin Methods
- Stabilization of DG Methods
- Analysis of Krylov Supspace Methods (Giuseppe Pitton)
- Boundary Element Mehtods (Nicola Giuliani)
References
Articles
- Babuška I. Error-bounds for finite element method. Numer Math
- Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. … Numer Anal Mathématique …. 1974:129–151.
- Stenberg R. A technique for analysing finite element methods for viscous incompressible flow. Int J Numer Methods Fluids. 1990;11(6):935–948. doi:10.1002/fld.1650110615
- Brezzi F, Cockburn B, Marini LD, Süli E. Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput Methods Appl Mech Engrg. 2006;195(25-28):3293–3310.
Books
- Quarteroni A. Numerical Models for Differential Problems.; 2009.
- Boffi D, Brezzi F, Fortin M. Mixed Finite Element Methods and Applications.; 2013. doi:10.1007/978-3-642-36519-5
- Liesen J, Strakos Z. Krylov Subspace Methods: Principles and Analysis. 1st ed. Oxford University Press; 2012.
- Sauter SA, Schwab C. Boundary element methods. New World Publ. 1992
Research Group:
Location:
A-133
Location:
A - 134 on May 24, 30, 31