Title | On the attainable set for Temple class systems with boundary controls |
Publication Type | Journal Article |
Year of Publication | 2005 |
Authors | Ancona, F, Coclite, GM |
Journal | SIAM J. Control Optim. 43 (2005) 2166-2190 |
Abstract | Consider the initial-boundary value problem for a strictly hyperbolic, genuinely nonlinear, Temple class system of conservation laws % $$ u_t+f(u)_x=0, \\\\qquad u(0,x)=\\\\ov u(x), \\\\qquad {{array}{ll} &u(t,a)=\\\\widetilde u_a(t), \\\\noalign{\\\\smallskip} &u(t,b)=\\\\widetilde u_b(t), {array}. \\\\eqno(1) $$ on the domain $\\\\Omega =\\\\{(t,x)\\\\in\\\\R^2 : t\\\\geq 0, a \\\\le x\\\\leq b\\\\}.$ We study the mixed problem (1) from the point of view of control theory, taking the initial data $\\\\bar u$ fixed, and regarding the boundary data $\\\\widetilde u_a, \\\\widetilde u_b$ as control functions that vary in prescribed sets $\\\\U_a, \\\\U_b$, of $\\\\li$ boundary controls. In particular, we consider the family of configurations $$ \\\\A(T) \\\\doteq \\\\big\\\\{u(T,\\\\cdot); ~ u {\\\\rm is a sol. to} (1), \\\\quad \\\\widetilde u_a\\\\in \\\\U_a, \\\\widetilde u_b \\\\in \\\\U_b \\\\big\\\\} $$ that can be attained by the system at a given time $T>0$, and we give a description of the attainable set $\\\\A(T)$ in terms of suitable Oleinik-type conditions. We also establish closure and compactness of the set $\\\\A(T)$ in the $lu$ topology. |
URL | http://hdl.handle.net/1963/1581 |
DOI | 10.1137/S0363012902407776 |
On the attainable set for Temple class systems with boundary controls
Research Group: