Title | Compactness by maximality |
Publication Type | Preprint |
2011 | |
Authors | Zagatti, S |
We derive a compactness property in the Sobolev space $W^{1,1}(\O)$ in order to study the Dirichlet problem for the eikonal equation \begin{displaymath} \begin{cases} \ha |\n u(x)|^2 - a(x) = 0 & \ \textrm{in} \ \O\cr u(x)=\varphi(x) & \ \textrm{on} \ \partial \O, \end{cases} \end{displaymath} without continuity assumptions on the map $a$. | |
http://preprints.sissa.it/handle/1963/35317 |
Research Group: