MENU

You are here

The elliptic representation of the sixth Painlevé equation.

TitleThe elliptic representation of the sixth Painlevé equation.
Publication TypeConference Proceedings
Year of Conference2004
AuthorsGuzzetti, D
Conference NameThéories asymptotiques et équations de Painlevé : [colloque], Angers, juin 2004 / édité par Éric Delabaere, Michèle Loday-Richaud. - Paris : Société mathématique de France, 2006. - Collection SMF. Séminaires et congrès. - page : 83-101
PublisherSociete Matematique de France
ISBN Number978-2-85629-229-7
KeywordsPainlevé equation
Abstract

We find a class of solutions of the sixth Painlev´e equation corresponding\r\nto almost all the monodromy data of the associated linear system; actually, all data\r\nbut one point in the space of data. We describe the critical behavior close to the\r\ncritical points by means of the elliptic representation, and we find the relation among\r\nthe parameters at the different critical points (connection problem).

URLhttp://hdl.handle.net/1963/6529

Sign in