Title | On the Minimal Number of Solutions of the Equation φ(n+k)=Mφ(n), M=1,2 |
Publication Type | Journal Article |
Year of Publication | 2023 |
Authors | Ferrari, M, Sillari, L |
Journal | Journal of Integer Sequences |
Volume | 26 |
Date Published | 01/2023 |
Type of Article | Article |
ISSN | 1530-7638 |
Other Numbers | Artcile number: 23.1.6 |
Keywords | Euler’s phi function |
Abstract | We fix a positive integer $k$ and look for solutions $n \in \mathbb{N}$ of the equations $\phi(n + k) = \phi(n)$ and $φ(n + k) = 2 φ(n)$. For $k \le 12 \cdot 10^{100}$, we prove that Fermat primes can be used to build five solutions for the first equation when $k$ is even, and five for the second one when $k$ is odd. Furthermore, for $k \le 4 \cdot 10^{58}$, we show that for the second equation there are at least three solutions when $k$ is even. Our work increases the previously known minimal number of solutions for both equations. |
URL | https://cs.uwaterloo.ca/journals/JIS/VOL26/Sillari/sillari3.html |