MENU

You are here

POD–Galerkin reduced order methods for combined Navier–Stokes transport equations based on a hybrid FV-FE solver

TitlePOD–Galerkin reduced order methods for combined Navier–Stokes transport equations based on a hybrid FV-FE solver
Publication TypeJournal Article
Year of Publication2020
AuthorsBusto, S, Stabile, G, Rozza, G, Vázquez-Cendón, ME
JournalComputers and Mathematics with Applications
Volume79
Pagination256-273
Abstract

The purpose of this work is to introduce a novel POD–Galerkin strategy for the semi-implicit hybrid high order finite volume/finite element solver introduced in Bermúdez et al. (2014) and Busto et al. (2018). The interest is into the incompressible Navier–Stokes equations coupled with an additional transport equation. The full order model employed in this article makes use of staggered meshes. This feature will be conveyed to the reduced order model leading to the definition of reduced basis spaces in both meshes. The reduced order model presented herein accounts for velocity, pressure, and a transport-related variable. The pressure term at both the full order and the reduced order level is reconstructed making use of a projection method. More precisely, a Poisson equation for pressure is considered within the reduced order model. Results are verified against three-dimensional manufactured test cases. Moreover a modified version of the classical cavity test benchmark including the transport of a species is analysed.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068068567&doi=10.1016%2fj.camwa.2019.06.026&partnerID=40&md5=a8dcce1b53b8ee872d174bbc4c20caa3
DOI10.1016/j.camwa.2019.06.026

Sign in