MENU

You are here

Solutions of vectorial Hamilton-Jacobi equations and minimizers of nonquasiconvex functionals

TitleSolutions of vectorial Hamilton-Jacobi equations and minimizers of nonquasiconvex functionals
Publication TypeJournal Article
Year of Publication2007
AuthorsZagatti, S
JournalJ. Math. Anal. Appl. 335 (2007) 1143-1160
Abstract

We provide a unified approach to prove existence results for the Dirichlet problem for Hamilton-Jacobi equations and for the minimum problem for nonquasiconvex functionals of the Calculus of Variations with affine boundary data. The idea relies on the definition of integro-extremal solutions introduced in the study of nonconvex scalar variational problem.

URLhttp://hdl.handle.net/1963/2763
DOI10.1016/j.jmaa.2007.02.034

Sign in