@article {2000,
title = {BV estimates for multicomponent chromatography with relaxation},
journal = {Discrete Contin. Dynam. Systems 6 (2000) 21-38},
number = {SISSA;122/99/M},
year = {2000},
publisher = {SISSA Library},
abstract = {We consider the Cauchy problem for a system of $2n$ balance laws which arises from the modelling of multi-component chromatography: $$\\\\left\\\\{ \\\\eqalign{u_t+u_x\&=-{1\\\\over\\\\ve}\\\\big( F(u)-v\\\\big),\\\\cr v_t\&={1\\\\over\\\\ve}\\\\big( F(u)-v\\\\big),\\\\cr}\\\\right. \\\\eqno(1)$$ This model describes a liquid flowing with unit speed over a solid bed. Several chemical substances are partly dissolved in the liquid, partly deposited on the solid bed. Their concentrations are represented respectively by the vectors $u=(u_1,\\\\ldots,u_n)$ and $v=(v_1,\\\\ldots,v_n)$. We show that, if the initial data have small total variation, then the solution of (1) remains with small variation for all times $t\\\\geq 0$. Moreover, using the $\\\\L^1$ distance, this solution depends Lipschitz continuously on the initial data, with a Lipschitz constant uniform w.r.t.~$\\\\ve$. Finally we prove that as $\\\\ve\\\\to 0$, the solutions of (1) converge to a limit described by the system $$\\\\big(u+F(u)\\\\big)_t+u_x=0,\\\\qquad\\\\qquad v=F(u).\\\\eqno(2)$$ The proof of the uniform BV estimates relies on the application of probabilistic techniques. It is shown that the components of the gradients $v_x,u_x$ can be interpreted as densities of random particles travelling with speed 0 or 1. The amount of coupling between different components is estimated in terms of the expected number of crossing of these random particles. This provides a first example where BV estimates are proved for general solutions to a class of $2n\\\\times 2n$ systems with relaxation.},
url = {http://hdl.handle.net/1963/1336},
author = {Alberto Bressan and Wen Shen}
}