We consider the weak solution of the Laplace equation in a planar domain with a straight crack, prescribing a homogeneous Neumann condition on the crack and a nonhomogeneous Dirichlet condition on the rest of the boundary. For every k we express the k-th derivative of the energy with respect to the crack length in terms of a finite number of coefficients of the asymptotic expansion of the solution near the crack tip and of a finite number of other parameters, which only depend on the shape of the domain.

}, keywords = {cracked domains, energy release rate, higher order derivatives, asymptotic expansion of solutions}, doi = {10.1007/s00030-014-0291-0}, url = {http://hdl.handle.net/1963/7271}, author = {Gianni Dal Maso and Gianluca Orlando and Rodica Toader} }