We address the Monge problem in metric spaces with a geodesic distance: (X, d) is a Polish non branching geodesic space. We show that we can reduce the transport problem to 1-dimensional transport problems along geodesics. We introduce an assumption on the transport problem π which implies that the conditional probabilities of the first marginal on each geodesic are continuous. It is known that this regularity is sufficient for the construction of an optimal transport map.

1 aBianchini, Stefano1 aCavalletti, Fabio1 aBressan, Alberto1 aChen, Gui-Qiang, G.1 aLewicka, Marta1 aWang, Dehua uhttps://www.math.sissa.it/publication/monge-problem-geodesic-spaces00794nas a2200121 4500008004300000245008000043210006900123520037400192100001900566700002500585700002600610856003600636 2010 en_Ud 00aShell theories arising as low energy Gamma-limit of 3d nonlinear elasticity0 aShell theories arising as low energy Gammalimit of 3d nonlinear 3 aWe discuss the limiting behavior (using the notion of gamma-limit) of the 3d nonlinear elasticity for thin shells around an arbitrary smooth 2d surface. In particular, under the assumption that the elastic energy of deformations scales like h4, h being the thickness of a shell, we derive a limiting theory which is a generalization of the von Karman theory for plates.1 aLewicka, Marta1 aMora, Maria Giovanna1 aPakzad, Mohammad Reza uhttp://hdl.handle.net/1963/260100530nas a2200121 4500008004300000245006400043210006200107520013300169100001900302700002500321700002600346856003600372 2009 en_Ud 00aA nonlinear theory for shells with slowly varying thickness0 anonlinear theory for shells with slowly varying thickness3 aWe study the Γ-limit of 3d nonlinear elasticity for shells of small, variable thickness, around an arbitrary smooth 2d surface.1 aLewicka, Marta1 aMora, Maria Giovanna1 aPakzad, Mohammad Reza uhttp://hdl.handle.net/1963/263200841nas a2200121 4500008004300000245007100043210006900114260004800183520041200231100002100643700001900664856003600683 2000 en_Ud 00aA Uniqueness Condition for Hyperbolic Systems of Conservation Laws0 aUniqueness Condition for Hyperbolic Systems of Conservation Laws bAmerican Institute of Mathematical Sciences3 aConsider the Cauchy problem for a hyperbolic $n\\\\times n$ system of conservation laws in one space dimension: $$u_t+f(u)_x=0, u(0,x)=\\\\bar u(x).\\\\eqno(CP)$$ Relying on the existence of a continuous semigroup of solutions, we prove that the entropy admissible solution of (CP) is unique within the class of functions $u=u(t,x)$ which have bounded variation along a suitable family of space-like curves.1 aBressan, Alberto1 aLewicka, Marta uhttp://hdl.handle.net/1963/3195