@mastersthesis {2016,
title = {t-structures on stable (infinity,1)-categories},
year = {2016},
school = {SISSA},
abstract = {The present work re-enacts the classical theory of t-structures reducing the classical definition coming from Algebraic Geometry to a rather primitive categorical gadget: suitable reflective factorization systems (defined in the work of Rosick{\'y}, Tholen, and Cassidy-H{\'e}bert-Kelly), which we call "normal torsion theories" following. A relation between these two objects has previously been noticed by other authors, on the level of the triangulated homotopy categories of stable (infinity,1)-categories. The main achievement of the present thesis is to observe and prove that this relation exists genuinely when the definition is lifted to the higher-dimensional world where the notion of triangulated category comes from.},
keywords = {category theory, higher category theory, factorization system, torsion theory, homological algebra, higher algebra},
url = {http://urania.sissa.it/xmlui/handle/1963/35202},
author = {Fosco Loregian}
}