In this paper we study the regularity of viscosity solutions to the following Hamilton-Jacobi equations $$ \partial_t u + H(D_{x} u)=0 \qquad \textrm{in}\quad \Omega\subset \mathbb{R}\times \mathbb{R}^{n} . $$ In particular, under the assumption that the Hamiltonian $H\in C^2(\mathbb{R}^n)$ is uniformly convex, we prove that $D_{x}u$ and $\partial_t u$ belong to the class $SBV_{loc}(\Omega)$.

}, doi = {10.1007/s00205-010-0381-z}, url = {http://hdl.handle.net/1963/4911}, author = {Stefano Bianchini and Camillo De Lellis and Roger Robyr} }