@article {2016, title = {On the third critical speed for rotating Bose-Einstein condensates}, journal = {Correggi, M., Dimonte, D., 2016. On the third critical speed for rotating Bose-Einstein condensates. J. Math. Phys. 57, 71901}, number = {Journal of Mathematical Physics;57}, year = {2016}, publisher = {AIP Publisher}, abstract = {We study a two-dimensional rotating Bose-Einstein condensate confined by an anharmonic trap in the framework of the Gross-Pitaevskii theory. We consider a rapid rotation regime close to the transition to a giant vortex state. It was proven in Correggi et al. [J. Math. Phys. 53, 095203 (2012)] that such a transition occurs when the angular velocity is of order ε-4, with ε-2 denoting the coefficient of the nonlinear term in the Gross-Pitaevskii functional and ε << 1 (Thomas-Fermi regime). In this paper, we identify a finite value Ωc such that if Ω = Ω0/ε4 with Ω0 > Ωc, the condensate is in the giant vortex phase. Under the same condition, we prove a refined energy asymptotics and an estimate of the winding number of any Gross-Pitaevskii minimizer.}, doi = {10.1063/1.4954805}, url = {http://urania.sissa.it/xmlui/handle/1963/35246}, author = {Daniele Dimonte and Michele Correggi} } @article {2015, title = {A class of Hamiltonians for a three-particle fermionic system at unitarity}, year = {2015}, note = {This SISSA preprint is composed of 29 pages and is recorded in PDF format}, abstract = {We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass $m$, where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for $m$ larger than a critical value $m^* \simeq (13.607)^{-1}$ a self-adjoint and lower bounded Hamiltonian $H_0$ can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for $m\in(m^*,m^{**})$, where $m^{**}\simeq (8.62)^{-1}$, there is a further family of self-adjoint and lower bounded Hamiltonians $H_{0,\beta}$, $\beta \in \mathbb{R}$, describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide.}, url = {http://urania.sissa.it/xmlui/handle/1963/34469}, author = {Michele Correggi and Gianfausto Dell{\textquoteright}Antonio and Domenico Finco and Alessandro Michelangeli and Alessandro Teta} }