We prove that the entropy for an $L^$\infty$$-solution to a scalar conservation laws with continuous initial data is concentrated on a countably $1$-rectifiable set. To prove this result we introduce the notion of Lagrangian representation of the solution and give regularity estimates on the solution.

}, keywords = {concentration, Conservation laws, entropy solutions, Lagrangian representation, shocks}, issn = {1937-1632}, doi = {10.3934/dcdss.2016.9.73}, url = {http://aimsciences.org//article/id/ce4eb91e-9553-4e8d-8c4c-868f07a315ae}, author = {Stefano Bianchini and Elio Marconi} } @article {modena2015convergence, title = {Convergence rate of the Glimm scheme}, journal = {Bulletin of the Institute of Mathematics of Academia Sinica (New Series)}, year = {2015}, author = {Stefano Modena and Stefano Bianchini} } @article {2009, title = {A connection between viscous profiles and singular ODEs}, journal = {Rend. Istit. Mat. Univ. Trieste 41 (2009) 35-41}, number = {SISSA;05/2008/M}, year = {2009}, url = {http://hdl.handle.net/1963/2555}, author = {Stefano Bianchini and Laura Spinolo} } @article {2002, title = {A center manifold technique for tracing viscous waves}, journal = {Commun. Pure Appl. Anal. 1 (2002) 161-190}, number = {SISSA;85/2001/M}, year = {2002}, publisher = {American Institute of Mathematical Sciences}, abstract = {In this paper we introduce a new technique for tracing viscous travelling profiles. To illustrate the method, we consider a special 2 x 2 hyperbolic system of conservation laws with viscosity, and show that any solution can be locally decomposed as the sum of 2 viscous travelling profiles. This yields the global existence, stability and uniform BV bounds for every solution with suitably small BV data.}, url = {http://hdl.handle.net/1963/3075}, author = {Stefano Bianchini and Alberto Bressan} } @article {2001, title = {A case study in vanishing viscosity}, journal = {Discrete Cont. Dyn. Syst. 7 (2001) 449-476}, year = {2001}, publisher = {American Institute of Mathematical Sciences}, url = {http://hdl.handle.net/1963/3091}, author = {Stefano Bianchini and Alberto Bressan} }