01445nas a2200121 4500008004300000245006200043210006200105260001300167520106100180100002801241700001801269856003601287 2005 en_Ud 00aStability of solutions of quasilinear parabolic equations0 aStability of solutions of quasilinear parabolic equations bElsevier3 aWe bound the difference between solutions $u$ and $v$ of $u_t = a\\\\Delta u+\\\\Div_x f+h$ and $v_t = b\\\\Delta v+\\\\Div_x g+k$ with initial data $\\\\phi$ and $ \\\\psi$, respectively, by $\\\\Vert u(t,\\\\cdot)-v(t,\\\\cdot)\\\\Vert_{L^p(E)}\\\\le A_E(t)\\\\Vert \\\\phi-\\\\psi\\\\Vert_{L^\\\\infty(\\\\R^n)}^{2\\\\rho_p}+ B(t)(\\\\Vert a-b\\\\Vert_{\\\\infty}+ \\\\Vert \\\\nabla_x\\\\cdot f-\\\\nabla_x\\\\cdot g\\\\Vert_{\\\\infty}+ \\\\Vert f_u-g_u\\\\Vert_{\\\\infty} + \\\\Vert h-k\\\\Vert_{\\\\infty})^{\\\\rho_p} \\\\abs{E}^{\\\\eta_p}$. Here all functions $a$, $f$, and $h$ are smooth and bounded, and may depend on $u$, $x\\\\in\\\\R^n$, and $t$. The functions $a$ and $h$ may in addition depend on $\\\\nabla u$. Identical assumptions hold for the functions that determine the solutions $v$. Furthermore, $E\\\\subset\\\\R^n$ is assumed to be a bounded set, and $\\\\rho_p$ and $\\\\eta_p$ are fractions that depend on $n$ and $p$. The diffusion coefficients $a$ and $b$ are assumed to be strictly positive and the initial data are smooth.1 aCoclite, Giuseppe Maria1 aHolden, Helge uhttp://hdl.handle.net/1963/2892