01018nas a2200109 4500008004300000245005800043210005800101520067400159100002500833700001400858856003600872 2009 en_Ud 00aOptimal transportation under nonholonomic constraints0 aOptimal transportation under nonholonomic constraints3 aWe study the Monge\\\'s optimal transportation problem where the cost is given by optimal control cost. We prove the existence and uniqueness of optimal map under certain regularity conditions on the Lagrangian, absolute continuity of the measures and most importantly the absent of sharp abnormal minimizers. In particular, this result is applicable in the case of subriemannian manifolds with a 2-generating distribution and cost given by d2, where d is the subriemannian distance. Also, we discuss some properties of the optimal plan when abnormal minimizers are present. Finally, we consider some examples of displacement interpolation in the case of Grushin plane.1 aAgrachev, Andrei, A.1 aLee, Paul uhttp://hdl.handle.net/1963/2176