01131nas a2200133 4500008004300000245006500043210006400108260001300172520071100185100002300896700002200919700002000941856003600961 2008 en_Ud 00aOptimal Strokes for Low Reynolds Number Swimmers: An Example0 aOptimal Strokes for Low Reynolds Number Swimmers An Example bSpringer3 aSwimming, i.e., being able to advance in the absence of external forces by performing cyclic shape changes, is particularly demanding at low Reynolds numbers. This is the regime of interest for micro-organisms and micro- or nano-robots. We focus in this paper on a simple yet representative example: the three-sphere swimmer of Najafi and Golestanian (Phys. Rev. E, 69, 062901-062904, 2004). For this system, we show how to cast the problem of swimming in the language of control theory, prove global controllability (which implies that the three-sphere swimmer can indeed swim), and propose a numerical algorithm to compute optimal strokes (which turn out to be suitably defined sub-Riemannian geodesics).1 aAlouges, François1 aDeSimone, Antonio1 aLefebvre, Aline uhttp://hdl.handle.net/1963/4006