01187nas a2200145 4500008004300000245004000043210004000083520078100123100002300904700002200927700001700949700002000966700001900986856003601005 2010 en_Ud 00aOptimally swimming Stokesian Robots0 aOptimally swimming Stokesian Robots3 aWe study self propelled stokesian robots composed of assemblies of balls, in dimen-\\nsions 2 and 3, and prove that they are able to control their position and orientation. This is a result of controllability, and its proof relies on applying Chow\\\'s theorem in an analytic framework, similarly to what has been done in [3] for an axisymmetric system swimming along the axis of symmetry. However, we simplify drastically\\nthe analyticity result given in [3] and apply it to a situation where more complex swimmers move either in a plane or in three-dimensional space, hence experiencing also rotations. We then focus our attention on energetically optimal strokes, which we are able to compute numerically. Some examples of computed optimal strokes are discussed in detail.1 aAlouges, François1 aDeSimone, Antonio1 aHeltai, Luca1 aLefebvre, Aline1 aMerlet, Benoit uhttp://hdl.handle.net/1963/3929