00842nas a2200109 4500008004300000245005800043210005600101260001300157520050500170100002100675856003600696 2011 en_Ud 00aA proof of Sudakov theorem with strictly convex norms0 aproof of Sudakov theorem with strictly convex norms bSpringer3 aWe establish a solution to the Monge problem in Rn, with an asymmetric, strictly convex norm cost function, when the initial measure is absolutely continuous. We focus on the strategy, based on disintegration of measures, initially proposed by Sudakov. As known, there is a gap to fill. The missing step is completed when the unit ball is strictly convex, but not necessarily differentiable nor uniformly convex. The key disintegration is achieved following a similar proof for a variational problem.1 aCaravenna, Laura uhttp://hdl.handle.net/1963/2967