01043nas a2200109 4500008004300000245005700043210005400100520069600154100001600850700003100866856003600897 2006 en_Ud 00aSemistability vs. nefness for (Higgs) vector bundles0 aSemistability vs nefness for Higgs vector bundles3 aAccording to Miyaoka, a vector bundle E on a smooth projective curve is semistable if and only if a certain numerical class in the projectivized bundle PE is nef. We establish a similar criterion for the semistability of Higgs bundles: namely, such a bundle is semistable if and only if for every integer s between 0 and the rank of E, a suitable numerical class in the scheme parametrizing the rank s locally-free Higgs quotients of E is nef. We also extend this result to higher-dimensional complex projective varieties by showing that the nefness of the above mentioned classes is equivalent to the semistability of the Higgs bundle E together with the vanishing of the discriminant of E.1 aBruzzo, Ugo1 aHernandez Ruiperez, Daniel uhttp://hdl.handle.net/1963/2237