01179nas a2200133 4500008004100000245006000041210005500101260001000156520076500166653004100931100001600972700002100988856003601009 2012 en d00aA formula for Popp\'s volume in sub-Riemannian geometry0 aformula for Popps volume in subRiemannian geometry bSISSA3 aFor an equiregular sub-Riemannian manifold M, Popp\'s volume is a smooth\r\nvolume which is canonically associated with the sub-Riemannian structure, and\r\nit is a natural generalization of the Riemannian one. In this paper we prove a\r\ngeneral formula for Popp\'s volume, written in terms of a frame adapted to the\r\nsub-Riemannian distribution. As a first application of this result, we prove an\r\nexplicit formula for the canonical sub-Laplacian, namely the one associated\r\nwith Popp\'s volume. Finally, we discuss sub-Riemannian isometries, and we prove\r\nthat they preserve Popp\'s volume. We also show that, under some hypotheses on\r\nthe action of the isometry group of M, Popp\'s volume is essentially the unique\r\nvolume with such a property.10asubriemannian, volume, Popp, control1 aRizzi, Luca1 aBarilari, Davide uhttp://hdl.handle.net/1963/6501