01580nas a2200145 4500008004100000245008700041210006900128260001000197520093400207653011301141100001501254700002201269700002101291856012201312 2012 en d00aSimulation-based uncertainty quantification of human arterial network hemodynamics0 aSimulationbased uncertainty quantification of human arterial net bWiley3 aThis work aims at identifying and quantifying uncertainties from various sources in human cardiovascular\r\nsystem based on stochastic simulation of a one dimensional arterial network. A general analysis of\r\ndifferent uncertainties and probability characterization with log-normal distribution of these uncertainties\r\nis introduced. Deriving from a deterministic one dimensional fluid structure interaction model, we establish\r\nthe stochastic model as a coupled hyperbolic system incorporated with parametric uncertainties to describe\r\nthe blood flow and pressure wave propagation in the arterial network. By applying a stochastic collocation\r\nmethod with sparse grid technique, we study systemically the statistics and sensitivity of the solution with\r\nrespect to many different uncertainties in a relatively complete arterial network with potential physiological\r\nand pathological implications for the first time.10auncertainty quantification, mathematical modelling of the cardiovascular system, fluid-structure interaction1 aChen, Peng1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttps://www.math.sissa.it/publication/simulation-based-uncertainty-quantification-human-arterial-network-hemodynamics