01398nas a2200121 4500008004100000245014300041210006900184260001000253520092300263100002301186700001901209856004801228 2018 en d00aCharacteristic boundary layers for mixed hyperbolic systems in one space dimension and applications to the Navier-Stokes and MHD equations0 aCharacteristic boundary layers for mixed hyperbolic systems in o bSISSA3 aWe provide a detailed analysis of the boundary layers for mixed hyperbolic-parabolic systems in one space dimension and small amplitude regimes. As an application of our results, we describe the solution of the so-called boundary Riemann problem recovered as the zero viscosity limit of the physical viscous approximation. In particular, we tackle the so called doubly characteristic case, which is considerably more demanding from the technical viewpoint and occurs when the boundary is characteristic for both the
mixed hyperbolic-parabolic system and for the hyperbolic system obtained by neglecting the second order terms. Our analysis applies in particular to the compressible Navier-Stokes and MHD equations in Eulerian coordinates, with both positive and null conductivity. In these cases, the doubly characteristic case occurs when the velocity is close to 0. The analysis extends to non-conservative systems.1 aBianchini, Stefano1 aSpinolo, Laura uhttp://preprints.sissa.it/handle/1963/35325