The subject of this paper is the rigorous derivation of reduced models for a thin plate by means of $\Gamma$-convergence, in the framework of finite plasticity. Denoting by $\epsilon$ the thickness of the plate, we analyse the case where the scaling factor of the elasto-plastic energy per unit volume is of order $\epsilon^{2 \alpha -2}$, with $\alpha \geq 3$. According to the value of $\alpha$, partially or fully linearized models are deduced, which correspond, in the absence of plastic deformation, to the Von Kármán plate theory and the linearized plate theory.

1 aDavoli, Elisa uhttps://www.math.sissa.it/publication/linearized-plastic-plate-models-%CE%B3-limits-3d-finite-elastoplasticity