00948nas a2200121 4500008004100000245006000041210006000101260002200161520056500183100002400748700001800772856003600790 2012 en d00aThermodynamic phase transitions and shock singularities0 aThermodynamic phase transitions and shock singularities bThe Royal Society3 aWe show that under rather general assumptions on the form of the entropy\\r\\nfunction, the energy balance equation for a system in thermodynamic equilibrium is equivalent to a set of nonlinear equations of hydrodynamic type. This set of equations is integrable via the method of the characteristics and it provides the equation of state for the gas. The shock wave catastrophe set identifies the phase transition. A family of explicitly solvable models of\\r\\nnon-hydrodynamic type such as the classical plasma and the ideal Bose gas are\\r\\nalso discussed.1 aDe Nittis, Giuseppe1 aMoro, Antonio uhttp://hdl.handle.net/1963/609001140nas a2200109 4500008004300000245006600043210006200109520077800171100002400949700002100973856003600994 2010 en_Ud 00aThe geometry emerging from the symmetries of a quantum system0 ageometry emerging from the symmetries of a quantum system3 aWe investigate the relation between the symmetries of a quantum system and its topological quantum numbers, in a general C*-algebraic framework. We prove that, under suitable assumptions on the symmetry algebra, there exists a generalization of the Bloch-Floquet transform which induces a direct-integral decomposition of the algebra of observables. Such generalized transform selects uniquely the set of \\\"continuous sections\\\" in the direct integral, thus yielding a Hilbert bundle. The emerging geometric structure provides some topological invariants of the quantum system. Two running examples provide an Ariadne\\\'s thread through the paper. For the sake of completeness, we review two related theorems by von Neumann and Maurin and compare them with our result.1 aDe Nittis, Giuseppe1 aPanati, Gianluca uhttp://hdl.handle.net/1963/3834