We consider the asymptotic behavior of a system of multi-component trapped bosons, when the total particle number N becomes large. In the dilute regime, when the interaction potentials have the length scale of order O(N−1), we show that the leading order of the ground state energy is captured correctly by the Gross–Pitaevskii energy functional and that the many-body ground state fully condensates on the Gross–Pitaevskii minimizers. In the mean-field regime, when the interaction length scale is O(1), we are able to verify Bogoliubov’s approximation and obtain the second order expansion of the ground state energy. While such asymptotic results have several precursors in the literature on one-component condensates, the adaptation to the multi-component setting is non-trivial in various respects and the analysis will be presented in detail.

1 aMichelangeli, Alessandro1 aNam, Phan, Thanh1 aOlgiati, Alessandro uhttps://doi.org/10.1142/S0129055X1950005301651nas a2200145 4500008004100000245009700041210006900138300001400207490000700221520116600228100001901394700002401413700002201437856004601459 2018 eng d00aCohesive fracture with irreversibility: Quasistatic evolution for a model subject to fatigue0 aCohesive fracture with irreversibility Quasistatic evolution for a1371-14120 v283 aIn this paper we prove the existence of quasistatic evolutions for a cohesive fracture on a prescribed crack surface, in small-strain antiplane elasticity. The main feature of the model is that the density of the energy dissipated in the fracture process depends on the total variation of the amplitude of the jump. Thus, any change in the crack opening entails a loss of energy, until the crack is complete. In particular this implies a fatigue phenomenon, i.e. a complete fracture may be produced by oscillation of small jumps. The first step of the existence proof is the construction of approximate evolutions obtained by solving discrete-time incremental minimum problems. The main difficulty in the passage to the continuous-time limit is that we lack of controls on the variations of the jump of the approximate evolutions. Therefore we resort to a weak formulation where the variation of the jump is replaced by a Young measure. Eventually, after proving the existence in this weak formulation, we improve the result by showing that the Young measure is concentrated on a function and coincides with the variation of the jump of the displacement.

1 aCrismale, Vito1 aLazzaroni, Giuliano1 aOrlando, Gianluca uhttps://doi.org/10.1142/S021820251850037901371nas a2200145 4500008004100000245008000041210007100121260002400192300001100216490000700227520088900234100002901123700002401152856004901176 2018 eng d00aEffective non-linear spinor dynamics in a spin-1 Bose–Einstein condensate0 aEffective nonlinear spinor dynamics in a spin1 Bose–Einstein con bIOP Publishingcsep a4052010 v513 aWe derive from first principles the experimentally observed effective dynamics of a spinor Bose gas initially prepared as a Bose–Einstein condensate and then left free to expand ballistically. In spinor condensates, which represent one of the recent frontiers in the manipulation of ultra-cold atoms, particles interact with a two-body spatial interaction and a spin–spin interaction. The effective dynamics is well-known to be governed by a system of coupled semi-linear Schrödinger equations: we recover this system, in the sense of marginals in the limit of infinitely many particles, with a mean-field re-scaling of the many-body Hamiltonian. When the resulting control of the dynamical persistence of condensation is quantified with the parameters of modern observations, we obtain a bound that remains quite accurate for the whole typical duration of the experiment.

1 aMichelangeli, Alessandro1 aOlgiati, Alessandro uhttps://doi.org/10.1088%2F1751-8121%2Faadbc200971nas a2200145 4500008004100000245008600041210006900127300001100196490000700207520050000214100002900714700002100743700002300764856003800787 2018 eng d00aFractional powers and singular perturbations of quantum differential Hamiltonians0 aFractional powers and singular perturbations of quantum differen a0721060 v593 aWe consider the fractional powers of singular (point-like) perturbations of the Laplacian and the singular perturbations of fractional powers of the Laplacian, and we compare two such constructions focusing on their perturbative structure for resolvents and on the local singularity structure of their domains. In application to the linear and non-linear Schrödinger equations for the corresponding operators, we outline a programme of relevant questions that deserve being investigated.

1 aMichelangeli, Alessandro1 aOttolini, Andrea1 aScandone, Raffaele uhttps://doi.org/10.1063/1.503385601292nas a2200157 4500008004100000245006900041210006900110260002100179300001200200490000700212520078900219100002901008700002401037700002301061856005001084 2018 eng d00aSingular Hartree equation in fractional perturbed Sobolev spaces0 aSingular Hartree equation in fractional perturbed Sobolev spaces bTaylor & Francis a558-5880 v253 aWe establish the local and global theory for the Cauchy problem of the singular Hartree equation in three dimensions, that is, the modification of the non-linear Schrödinger equation with Hartree non-linearity, where the linear part is now given by the Hamiltonian of point interaction. The latter is a singular, self-adjoint perturbation of the free Laplacian, modelling a contact interaction at a fixed point. The resulting non-linear equation is the typical effective equation for the dynamics of condensed Bose gases with fixed point-like impurities. We control the local solution theory in the perturbed Sobolev spaces of fractional order between the mass space and the operator domain. We then control the global solution theory both in the mass and in the energy space.

1 aMichelangeli, Alessandro1 aOlgiati, Alessandro1 aScandone, Raffaele uhttps://doi.org/10.1080/14029251.2018.150342300361nas a2200109 4500008004100000245005600041210005300097100002100150700001900171700002400190856003700214 2018 eng d00aOn some rigorous aspects of fragmented condensation0 asome rigorous aspects of fragmented condensation1 aDimonte, Daniele1 aFalconi, Marco1 aOlgiati, Alessandro uhttps://arxiv.org/abs/1809.0358601139nas a2200157 4500008004100000020002200041245007400063210006900137260004400206300001400250520058600264100002400850700002900874700002900903856004900932 2017 eng d a978-3-319-58904-600aEffective Non-linear Dynamics of Binary Condensates and Open Problems0 aEffective Nonlinear Dynamics of Binary Condensates and Open Prob aChambSpringer International Publishing a239–2563 aWe report on a recent result concerning the effective dynamics for a mixture of Bose-Einstein condensates, a class of systems much studied in physics and receiving a large amount of attention in the recent literature in mathematical physics; for such models, the effective dynamics is described by a coupled system of non-linear Schödinger equations. After reviewing and commenting our proof in the mean-field regime from a previous paper, we collect the main details needed to obtain the rigorous derivation of the effective dynamics in the Gross-Pitaevskii scaling limit.

1 aOlgiati, Alessandro1 aMichelangeli, Alessandro1 aDell'Antonio, Gianfausto uhttps://doi.org/10.1007/978-3-319-58904-6_1401947nas a2200145 4500008004100000245007100041210006800112260002100180300001200201490000700213520147800220100002901698700002401727856005001751 2017 eng d00aGross-Pitaevskii non-linear dynamics for pseudo-spinor condensates0 aGrossPitaevskii nonlinear dynamics for pseudospinor condensates bTaylor & Francis a426-4640 v243 aWe derive the equations for the non-linear effective dynamics of a so called pseudo-spinor Bose-Einstein condensate, which emerges from the linear many-body Schrödinger equation at the leading order in the number of particles. The considered system is a three-dimensional diluted gas of identical bosons with spin, possibly confined in space, and coupled with an external time-dependent magnetic field; particles also interact among themselves through a short-scale repulsive interaction. The limit of infinitely many particles is monitored in the physically relevant Gross-Pitaevskii scaling. In our main theorem, if at time zero the system is in a phase of complete condensation (at the level of the reduced one-body marginal) and with energy per particle fixed by the Gross-Pitaevskii functional, then such conditions persist also at later times, with the one-body orbital of the condensate evolving according to a system of non-linear cubic Schrödinger equations coupled among themselves through linear (Rabi) terms. The proof relies on an adaptation to the spinor setting of Pickl’s projection counting method developed for the scalar case. Quantitative rates of convergence are available, but not made explicit because evidently non-optimal. In order to substantiate the formalism and the assumptions made in the main theorem, in an introductory section we review the mathematical formalisation of modern typical experiments with pseudo-spinor condensates.

1 aMichelangeli, Alessandro1 aOlgiati, Alessandro uhttps://doi.org/10.1080/14029251.2017.134634800742nas a2200121 4500008004100000245006300041210006000104520033800164100002000502700002900522700002100551856004800572 2017 en d00aKrein-Visik-Birman self-adjoint extension theory revisited0 aKreinVisikBirman selfadjoint extension theory revisited3 aThe core results of the so-called KreIn-Visik-Birman theory of self-adjoint extensions of semi-bounded symmetric operators are reproduced, both in their original and in a more modern formulation, within a comprehensive discussion that includes missing details, elucidative steps, and intermediate results of independent interest.1 aGallone, Matteo1 aMichelangeli, Alessandro1 aOttolini, Andrea uhttp://preprints.sissa.it/handle/1963/3528600988nas a2200157 4500008004100000245010900041210006900150260001500219300001400234490000700248520038700255100002100642700002200663700001900685856012600704 2017 eng d00aLower semicontinuity of a class of integral functionals on the space of functions of bounded deformation0 aLower semicontinuity of a class of integral functionals on the s bDe Gruyter a183–2070 v103 aWe study the lower semicontinuity of some free discontinuity functionals with linear growth defined on the space of functions with bounded deformation. The volume term is convex and depends only on the Euclidean norm of the symmetrized gradient. We introduce a suitable class of surface terms, which make the functional lower semicontinuous with respect to $L^1$ convergence.

1 aDal Maso, Gianni1 aOrlando, Gianluca1 aToader, Rodica uhttps://www.math.sissa.it/publication/lower-semicontinuity-class-integral-functionals-space-functions-bounded-deformation00961nas a2200157 4500008004100000022001400041245007700055210007100132260000800203300001400211490000600225520047300231100002900704700002400733856004600757 2017 eng d a1664-235X00aMean-field quantum dynamics for a mixture of Bose–Einstein condensates0 aMeanfield quantum dynamics for a mixture of Bose–Einstein conden cDec a377–4160 v73 aWe study the effective time evolution of a large quantum system consisting of a mixture of different species of identical bosons in interaction. If the system is initially prepared so as to exhibit condensation in each component, we prove that condensation persists at later times and we show quantitatively that the many-body Schrödinger dynamics is effectively described by a system of coupled cubic non-linear Schrödinger equations, one for each component.

1 aMichelangeli, Alessandro1 aOlgiati, Alessandro uhttps://doi.org/10.1007/s13324-016-0147-301246nas a2200205 4500008004100000245008100041210006900122260003800191300001400229520059600243100002400839700002100863700001600884700001800900700002100918700002000939700002100959700001900980856004100999 2017 eng d00aReduced-order semi-implicit schemes for fluid-structure interaction problems0 aReducedorder semiimplicit schemes for fluidstructure interaction bSpringer International Publishing a149–1673 aPOD–Galerkin reduced-order models (ROMs) for fluid-structure interaction problems (incompressible fluid and thin structure) are proposed in this paper. Both the high-fidelity and reduced-order methods are based on a Chorin-Temam operator-splitting approach. Two different reduced-order methods are proposed, which differ on velocity continuity condition, imposed weakly or strongly, respectively. The resulting ROMs are tested and compared on a representative haemodynamics test case characterized by wave propagation, in order to assess the capabilities of the proposed strategies.

1 aBallarin, Francesco1 aRozza, Gianluigi1 aMaday, Yvon1 aBenner, Peter1 aOhlberger, Mario1 aPatera, Anthony1 aRozza, Gianluigi1 aUrban, Karsten uhttps://www.math.sissa.it/node/1294800917nas a2200157 4500008004100000020002200041245008300063210006900146260004400215300001400259520035500273100002400628700002900652700002900681856004900710 2017 eng d a978-3-319-58904-600aRemarks on the Derivation of Gross-Pitaevskii Equation with Magnetic Laplacian0 aRemarks on the Derivation of GrossPitaevskii Equation with Magne aChambSpringer International Publishing a257–2663 aThe effective dynamics for a Bose-Einstein condensate in the regime of high dilution and subject to an external magnetic field is governed by a magnetic Gross-Pitaevskii equation. We elucidate the steps needed to adapt to the magnetic case the proof of the derivation of the Gross-Pitaevskii equation within the ``projection counting'' scheme.

1 aOlgiati, Alessandro1 aMichelangeli, Alessandro1 aDell'Antonio, Gianfausto uhttps://doi.org/10.1007/978-3-319-58904-6_1501253nas a2200133 4500008004100000245007800041210006900119260001000188520080500198100001801003700002901021700002101050856004801071 2017 en d00aSpectral Properties of the 2+1 Fermionic Trimer with Contact Interactions0 aSpectral Properties of the 21 Fermionic Trimer with Contact Inte bSISSA3 aWe qualify the main features of the spectrum of the Hamiltonian of point interaction for a three-dimensional quantum system consisting of three point-like particles, two identical fermions, plus a third particle of different species, with two-body interaction of zero range. For arbitrary magnitude of the interaction, and arbitrary value of the mass parameter (the ratio between the mass of the third particle and that of each fermion) above the stability threshold, we identify the essential spectrum, localise and prove the finiteness of the discrete spectrum, qualify the angular symmetry of the eigenfunctions, and prove the monotonicity of the eigenvalues with respect to the mass parameter. We also demonstrate the existence of bound states in a physically relevant regime of masses.1 aBecker, Simon1 aMichelangeli, Alessandro1 aOttolini, Andrea uhttp://preprints.sissa.it/handle/1963/3530300965nas a2200169 4500008004100000022001400041245012900055210006900184260000800253300000700261490000700268520041200275100002100687700002200708700001900730856004600749 2016 eng d a1432-083500aFracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case0 aFracture models for elastoplastic materials as limits of gradien cApr a450 v553 aWe study the asymptotic behavior of a variational model for damaged elasto-plastic materials in the case of antiplane shear. The energy functionals we consider depend on a small parameter $\varepsilon$, which forces damage concentration on regions of codimension one. We determine the $\Gamma$-limit as $\varepsilon$ tends to zero and show that it contains an energy term involving the crack opening.

1 aDal Maso, Gianni1 aOrlando, Gianluca1 aToader, Rodica uhttps://doi.org/10.1007/s00526-016-0981-z01319nas a2200109 4500008004100000245011100041210006900152520088700221100002901108700002101137856005101158 2016 en d00aMultiplicity of self-adjoint realisations of the (2+1)-fermionic model of Ter-Martirosyan--Skornyakov type0 aMultiplicity of selfadjoint realisations of the 21fermionic mode3 aWe reconstruct the whole family of self-adjoint Hamiltonians of Ter-Martirosyan- Skornyakov type for a system of two identical fermions coupled with a third particle of different nature through an interaction of zero range. We proceed through an operator-theoretic approach based on the self-adjoint extension theory of Kreĭn, Višiik, and Birman. We identify the explicit `Kreĭn-Višik-Birman extension param- eter' as an operator on the `space of charges' for this model (the `Kreĭn space') and we come to formulate a sharp conjecture on the dimensionality of its kernel. Based on our conjecture, for which we also discuss an amount of evidence, we explain the emergence of a multiplicity of extensions in a suitable regime of masses and we re- produce for the first time the previous partial constructions obtained by means of an alternative quadratic form approach.1 aMichelangeli, Alessandro1 aOttolini, Andrea uhttp://urania.sissa.it/xmlui/handle/1963/3526701116nas a2200109 4500008004100000245007800041210006900119520071700188100002900905700002100934856005100955 2016 en d00aOn point interactions realised as Ter-Martirosyan-Skornyakov Hamiltonians0 apoint interactions realised as TerMartirosyanSkornyakov Hamilton3 aFor quantum systems of zero-range interaction we discuss the mathematical scheme within which modelling the two-body interaction by means of the physically relevant ultra-violet asymptotics known as the ``Ter-Martirosyan--Skornyakov condition'' gives rise to a self-adjoint realisation of the corresponding Hamiltonian. This is done within the self-adjoint extension scheme of Krein, Visik, and Birman. We show that the Ter-Martirosyan--Skornyakov asymptotics is a condition of self-adjointness only when is imposed in suitable functional spaces, and not just as a point-wise asymptotics, and we discuss the consequences of this fact on a model of two identical fermions and a third particle of different nature.1 aMichelangeli, Alessandro1 aOttolini, Andrea uhttp://urania.sissa.it/xmlui/handle/1963/3519500431nas a2200133 4500008004100000245004100041210004000082260001000122100002700132700001700159700002200176700002000198856007900218 2016 en d00aSecond-order structured deformations0 aSecondorder structured deformations bSISSA1 aBarroso, Ana, Cristina1 aMatias, Jose1 aMorandotti, Marco1 aOwen, David, R. uhttps://www.math.sissa.it/publication/second-order-structured-deformations02252nas a2200145 4500008004100000245009600041210006900137260001000206520175300216100002701969700001701996700002202013700002002035856005102055 2015 en d00aExplicit formulas for relaxed disarrangement densities arising from structured deformations0 aExplicit formulas for relaxed disarrangement densities arising f bSISSA3 aStructured deformations provide a multiscale geometry that captures the contributions at the macrolevel of both smooth geometrical changes and non-smooth geometrical changes (disarrangements) at submacroscopic levels. For each (first-order) structured deformation (g,G) of a continuous body, the tensor field G is known to be a measure of deformations without disarrangements, and M:=∇g−G is known to be a measure of deformations due to disarrangements. The tensor fields G and M together deliver not only standard notions of plastic deformation, but M and its curl deliver the Burgers vector field associated with closed curves in the body and the dislocation density field used in describing geometrical changes in bodies with defects. Recently, Owen and Paroni [13] evaluated explicitly some relaxed energy densities arising in Choksi and Fonseca’s energetics of structured deformations [4] and thereby showed: (1) (trM)+ , the positive part of trM, is a volume density of disarrangements due to submacroscopic separations, (2) (trM)−, the negative part of trM, is a volume density of disarrangements due to submacroscopic switches and interpenetrations, and (3) trM, the absolute value of trM, is a volume density of all three of these non-tangential disarrangements: separations, switches, and interpenetrations. The main contribution of the present research is to show that a different approach to the energetics of structured deformations, that due to Ba\'{i}a, Matias, and Santos [1], confirms the roles of (trM)+, (trM)−, and trM established by Owen and Paroni. In doing so, we give an alternative, shorter proof of Owen and Paroni’s results, and we establish additional explicit formulas for other measures of disarrangements.1 aBarroso, Ana, Cristina1 aMatias, Jose1 aMorandotti, Marco1 aOwen, David, R. uhttp://urania.sissa.it/xmlui/handle/1963/3449200678nas a2200169 4500008004100000245013400041210006900175300001400244490000700258100001800265700002100283700002000304700002100324700001900345700001900364856012500383 2015 eng d00aModel order reduction of parameterized systems ({MoRePaS}): Preface to the special issue of advances in computational mathematics0 aModel order reduction of parameterized systems MoRePaS Preface t a955–9600 v411 aBenner, Peter1 aOhlberger, Mario1 aPatera, Anthony1 aRozza, Gianluigi1 aSorensen, D.C.1 aUrban, Karsten uhttps://www.math.sissa.it/publication/model-order-reduction-parameterized-systems-morepas-preface-special-issue-advances00747nas a2200121 4500008004100000245006900041210006700110260003200177520032200209100001600531700002700547856005100574 2014 en d00aApproximate Hitchin-Kobayashi correspondence for Higgs G-bundles0 aApproximate HitchinKobayashi correspondence for Higgs Gbundles bWorld Scientific Publishing3 aWe announce a result about the extension of the Hitchin-Kobayashi correspondence to principal Higgs bundles. A principal Higgs bundle on a compact Kähler manifold, with structure group a connected linear algebraic reductive group, is semistable if and only if it admits an approximate Hermitian-Yang-Mills structure.1 aBruzzo, Ugo1 aOtero, Beatriz, Graña uhttp://urania.sissa.it/xmlui/handle/1963/3509501118nas a2200145 4500008004100000245013100041210006900172260001000241520052100251653010200772100002100874700002200895700001900917856003600936 2014 en d00aLaplace equation in a domain with a rectilinear crack: higher order derivatives of the energy with respect to the crack length0 aLaplace equation in a domain with a rectilinear crack higher ord bSISSA3 aWe consider the weak solution of the Laplace equation in a planar domain with a straight crack, prescribing a homogeneous Neumann condition on the crack and a nonhomogeneous Dirichlet condition on the rest of the boundary. For every k we express the k-th derivative of the energy with respect to the crack length in terms of a finite number of coefficients of the asymptotic expansion of the solution near the crack tip and of a finite number of other parameters, which only depend on the shape of the domain.

10acracked domains, energy release rate, higher order derivatives, asymptotic expansion of solutions1 aDal Maso, Gianni1 aOrlando, Gianluca1 aToader, Rodica uhttp://hdl.handle.net/1963/727100807nas a2200157 4500008004300000245008900043210006900132260002800201520027900229100002200508700002100530700002100551700002200572700001900594856003600613 2010 en_Ud 00aOn the geometric origin of the bi-Hamiltonian structure of the Calogero-Moser system0 ageometric origin of the biHamiltonian structure of the CalogeroM bOxford University Press3 aWe show that the bi-Hamiltonian structure of the rational n-particle (attractive) Calogero-Moser system can be obtained by means of a double projection from a very simple Poisson pair on the cotangent bundle of gl(n,R). The relation with the Lax formalism is also discussed.1 aBartocci, Claudio1 aFalqui, Gregorio1 aMencattini, Igor1 aOrtenzi, Giovanni1 aPedroni, Marco uhttp://hdl.handle.net/1963/380001154nas a2200121 4500008004300000245004500043210004300088520080300131100002200934700002400956700001600980856003600996 2007 en_Ud 00aA new model for contact angle hysteresis0 anew model for contact angle hysteresis3 aWe present a model which explains several experimental observations relating contact angle hysteresis with surface roughness. The model is based on the balance between released energy and dissipation, and it describes the stick-slip behavior of drops on a rough surface using ideas similar to those employed in dry friction, elasto-plasticity and fracture mechanics. The main results of our analysis are formulas giving the interval of stable contact angles as a function of the surface roughness. These formulas show that the difference between advancing and receding angles is much larger for a drop in complete contact with the substrate (Wenzel drop) than for one whose cavities are filled with air (Cassie-Baxter drop). This fact is used as the key tool to interpret the experimental evidence.1 aDeSimone, Antonio1 aGruenewald, Natalie1 aOtto, Felix uhttp://hdl.handle.net/1963/184800572nas a2200121 4500008004300000245003600043210003500079520024300114100002200357700001900379700001600398856003600414 2006 en_Ud 00a2-d stability of the Néel wall0 a2d stability of the Néel wall3 aWe are interested in thin-film samples in micromagnetism, where the magnetization m is a 2-d unit-length vector field. More precisely we are interested in transition layers which connect two opposite magnetizations, so called Néel walls.1 aDeSimone, Antonio1 aKnuepfer, Hans1 aOtto, Felix uhttp://hdl.handle.net/1963/219400420nas a2200133 4500008004300000020002200043245005300065210005300118100002200171700002100193700002000214700001600234856003600250 2006 en_Ud a978-0-12-480874-400aRecent analytical developments in micromagnetics0 aRecent analytical developments in micromagnetics1 aDeSimone, Antonio1 aKohn, Robert, V.1 aMüller, Stefan1 aOtto, Felix uhttp://hdl.handle.net/1963/223000817nas a2200133 4500008004100000245009500041210006900136260001000205520036300215100002100578700002700599700002100626856003600647 1999 en d00aA Lipschitz selection from the set of minimizers of a nonconvex functional of the gradient0 aLipschitz selection from the set of minimizers of a nonconvex fu bSISSA3 aA constructive and improved version of the proof that there exist a continuous map that solves the convexified problem is presented. A Lipschitz continuous map is analyzed such that a map vector minimizes the functional at each vector satisfying Cellina\\\'s condition of existence of minimum. This map is explicitly given by a direct constructive algorithm.1 aDal Maso, Gianni1 aGoncharov, Vladimir V.1 aOrnelas, Antonio uhttp://hdl.handle.net/1963/643900470nas a2200133 4500008004100000245007500041210006900116260003700185100002100222700002000243700001800263700001900281856003600300 1999 en d00aRenormalized solutions of elliptic equations with general measure data0 aRenormalized solutions of elliptic equations with general measur bScuola Normale Superiore di Pisa1 aDal Maso, Gianni1 aMurat, Francois1 aOrsina, Luigi1 aPrignet, Alain uhttp://hdl.handle.net/1963/1236