Many-body states whose wave-function admits a representation in terms of a uniform binary-tree tensor decomposition are shown to obey to power-law two-body correlations functions. Any such state can be associated with the ground state of a translational invariant Hamiltonian which, depending on the dimension of the systems sites, involve at most couplings between third-neighboring sites. A detailed analysis of their spectra shows that they admit an exponentially large ground space.

1 aSilvi, Pietro1 aGiovannetti, Vittorio1 aMontangero, Simone1 aRizzi, Matteo1 aCirac, J. Ignacio1 aFazio, Rosario uhttp://hdl.handle.net/1963/390901188nas a2200157 4500008004300000245010800043210006900151260001900220520065100239100001800890700002300908700001800931700002600949700001900975856003600994 2010 en_Ud 00aHomogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems0 aHomogeneous multiscale entanglement renormalization ansatz tenso bIOP Publishing3 aIn this paper, we review the properties of homogeneous multiscale entanglement renormalization ansatz (MERA) to describe quantum critical systems.We discuss in more detail our results for one-dimensional (1D) systems (the Ising and Heisenberg models) and present new data for the 2D Ising model. Together with the results for the critical exponents, we provide a detailed description of the numerical algorithm and a discussion of new optimization\\nstrategies. The relation between the critical properties of the system and the tensor structure of the MERA is expressed using the formalism of quantum channels, which we review and extend.

1 aRizzi, Matteo1 aMontangero, Simone1 aSilvi, Pietro1 aGiovannetti, Vittorio1 aFazio, Rosario uhttp://hdl.handle.net/1963/4067