01567nas a2200121 4500008004100000245008300041210006900124260001300193520115600206100002501362700002201387856003601409 2012 en d00aWeighted barycentric sets and singular Liouville equations on compact surfaces0 aWeighted barycentric sets and singular Liouville equations on co bElsevier3 aGiven a closed two dimensional manifold, we prove a general existence result\\r\\nfor a class of elliptic PDEs with exponential nonlinearities and negative Dirac\\r\\ndeltas on the right-hand side, extending a theory recently obtained for the\\r\\nregular case. This is done by global methods: since the associated Euler\\r\\nfunctional is in general unbounded from below, we need to define a new model\\r\\nspace, generalizing the so-called space of formal barycenters and\\r\\ncharacterizing (up to homotopy equivalence) its very low sublevels. As a\\r\\nresult, the analytic problem is reduced to a topological one concerning the\\r\\ncontractibility of this model space. To this aim, we prove a new functional\\r\\ninequality in the spirit of [16] and then we employ a min-max scheme based on a cone-style construction, jointly with the blow-up analysis given in [5] (after\\r\\n[6] and [8]). This study is motivated by abelian Chern- Simons theory in\\r\\nself-dual regime, or from the problem of prescribing the Gaussian curvature in\\r\\npresence of conical singularities (hence generalizing a problem raised by\\r\\nKazdan and Warner in [26]).1 aCarlotto, Alessandro1 aMalchiodi, Andrea uhttp://hdl.handle.net/1963/521800981nas a2200121 4500008004100000245006900041210006700110260001300177520058600190100002500776700002200801856003600823 2011 en d00aA class of existence results for the singular Liouville equation0 aclass of existence results for the singular Liouville equation bElsevier3 aWe consider a class of elliptic PDEs on closed surfaces with exponential nonlinearities and Dirac deltas on the right-hand side. The study arises from abelian Chernâ€“Simons theory in self-dual regime, or from the problem of prescribing the Gaussian curvature in presence of conical singularities. A general existence result is proved using global variational methods: the analytic problem is reduced to a topological problem concerning the contractibility of a model space, the so-called space of formal barycenters, characterizing the very low sublevels of a suitable functional.1 aCarlotto, Alessandro1 aMalchiodi, Andrea uhttp://hdl.handle.net/1963/5793