The majority of the most common physical phenomena can be described using partial differential equations (PDEs). However, they are very often characterized by strong nonlinearities. Such features lead to the coexistence of multiple solutions studied by the bifurcation theory. Unfortunately, in practical scenarios, one has to exploit numerical methods to compute the solutions of systems of PDEs, even if the classical techniques are usually able to compute only a single solution for any value of a parameter when more branches exist. In this work we implemented an elaborated deflated continuation method, that relies on the spectral element method (SEM) and on the reduced basis (RB) one, to efficiently compute bifurcation diagrams with more parameters and more bifurcation points. The deflated continuation method can be obtained combining the classical continuation method and the deflation one: the former is used to entirely track each known branch of the diagram, while the latter is exploited to discover the new ones. Finally, when more than one parameter is considered, the efficiency of the computation is ensured by the fact that the diagrams can be computed during the online phase while, during the offline one, one only has to compute one-dimensional diagrams. In this work, after a more detailed description of the method, we will show the results that can be obtained using it to compute a bifurcation diagram associated with a problem governed by the Navier-Stokes equations.

1 aPintore, Moreno1 aPichi, Federico1 aHess, Martin1 aRozza, Gianluigi1 aCanuto, Claudio uhttps://arxiv.org/abs/1912.0608901527nas a2200145 4500008004100000245011100041210006900152300001200221490000700233520104500240100001701285700002101302700002101323856003701344 2020 eng d00aReduced Basis Model Order Reduction for Navier-Stokes equations in domains with walls of varying curvature0 aReduced Basis Model Order Reduction for NavierStokes equations i a119-1260 v343 aWe consider the Navier-Stokes equations in a channel with a narrowing and walls of varying curvature. By applying the empirical interpolation method to generate an affine parameter dependency, the offline-online procedure can be used to compute reduced order solutions for parameter variations. The reduced order space is computed from the steady-state snapshot solutions by a standard POD procedure. The model is discretised with high-order spectral element ansatz functions, resulting in 4752 degrees of freedom. The proposed reduced order model produces accurate approximations of steady-state solutions for a wide range of geometries and kinematic viscosity values. The application that motivated the present study is the onset of asymmetries (i.e., symmetry breaking bifurcation) in blood flow through a regurgitant mitral valve, depending on the Reynolds number and the valve shape. Through our computational study, we found that the critical Reynolds number for the symmetry breaking increases as the wall curvature increases.

1 aHess, Martin1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://arxiv.org/abs/1901.0370802124nas a2200169 4500008004100000245008400041210006900125300001200194490000800206520160300214100001701817700002101834700002101855700002101876700002001897856003701917 2019 eng d00aA Localized Reduced-Order Modeling Approach for PDEs with Bifurcating Solutions0 aLocalized ReducedOrder Modeling Approach for PDEs with Bifurcati a379-4030 v3513 aReduced-order modeling (ROM) commonly refers to the construction, based on a few solutions (referred to as snapshots) of an expensive discretized partial differential equation (PDE), and the subsequent application of low-dimensional discretizations of partial differential equations (PDEs) that can be used to more efficiently treat problems in control and optimization, uncertainty quantification, and other settings that require multiple approximate PDE solutions. In this work, a ROM is developed and tested for the treatment of nonlinear PDEs whose solutions bifurcate as input parameter values change. In such cases, the parameter domain can be subdivided into subregions, each of which corresponds to a different branch of solutions. Popular ROM approaches such as proper orthogonal decomposition (POD), results in a global low-dimensional basis that does no respect not take advantage of the often large differences in the PDE solutions corresponding to different subregions. Instead, in the new method, the k-means algorithm is used to cluster snapshots so that within cluster snapshots are similar to each other and are dissimilar to those in other clusters. This is followed by the construction of local POD bases, one for each cluster. The method also can detect which cluster a new parameter point belongs to, after which the local basis corresponding to that cluster is used to determine a ROM approximation. Numerical experiments show the effectiveness of the method both for problems for which bifurcation cause continuous and discontinuous changes in the solution of the PDE.

1 aHess, Martin1 aAlla, Alessandro1 aQuaini, Annalisa1 aRozza, Gianluigi1 aGunzburger, Max uhttps://arxiv.org/abs/1807.08851