The majority of the most common physical phenomena can be described using partial differential equations (PDEs). However, they are very often characterized by strong nonlinearities. Such features lead to the coexistence of multiple solutions studied by the bifurcation theory. Unfortunately, in practical scenarios, one has to exploit numerical methods to compute the solutions of systems of PDEs, even if the classical techniques are usually able to compute only a single solution for any value of a parameter when more branches exist. In this work we implemented an elaborated deflated continuation method, that relies on the spectral element method (SEM) and on the reduced basis (RB) one, to efficiently compute bifurcation diagrams with more parameters and more bifurcation points. The deflated continuation method can be obtained combining the classical continuation method and the deflation one: the former is used to entirely track each known branch of the diagram, while the latter is exploited to discover the new ones. Finally, when more than one parameter is considered, the efficiency of the computation is ensured by the fact that the diagrams can be computed during the online phase while, during the offline one, one only has to compute one-dimensional diagrams. In this work, after a more detailed description of the method, we will show the results that can be obtained using it to compute a bifurcation diagram associated with a problem governed by the Navier-Stokes equations.

1 aPintore, Moreno1 aPichi, Federico1 aHess, Martin1 aRozza, Gianluigi1 aCanuto, Claudio uhttps://arxiv.org/abs/1912.0608901419nas a2200121 4500008004100000245010700041210006900148520098100217100002001198700002101218700002101239856003701260 2020 eng d00aA Reduced Order technique to study bifurcating phenomena: application to the Gross-Pitaevskii equation0 aReduced Order technique to study bifurcating phenomena applicati3 aWe propose a computationally efficient framework to treat nonlinear partial differential equations having bifurcating solutions as one or more physical control parameters are varied. Our focus is on steady bifurcations. Plotting a bifurcation diagram entails computing multiple solutions of a parametrized, nonlinear problem, which can be extremely expensive in terms of computational time. In order to reduce these demanding computational costs, our approach combines a continuation technique and Newton's method with a Reduced Order Modeling (ROM) technique, suitably supplemented with a hyper-reduction method. To demonstrate the effectiveness of our ROM approach, we trace the steady solution branches of a nonlinear Schrödinger equation, called Gross-Pitaevskii equation, as one or two physical parameters are varied. In the two parameter study, we show that our approach is 60 times faster in constructing a bifurcation diagram than a standard Full Order Method.

1 aPichi, Federico1 aQuaini, Annalisa1 aRozza, Gianluigi uhttps://arxiv.org/abs/1907.0708201370nas a2200133 4500008004100000245010900041210006900150300001400219490000700233520091800240100002001158700002101178856003701199 2019 eng d00aReduced basis approaches for parametrized bifurcation problems held by non-linear Von Kármán equations0 aReduced basis approaches for parametrized bifurcation problems h a112–1350 v813 aThis work focuses on the computationally efficient detection of the buckling phenomena and bifurcation analysis of the parametric Von Kármán plate equations based on reduced order methods and spectral analysis. The computational complexity - due to the fourth order derivative terms, the non-linearity and the parameter dependence - provides an interesting benchmark to test the importance of the reduction strategies, during the construction of the bifurcation diagram by varying the parameter(s). To this end, together the state equations, we carry out also an analysis of the linearized eigenvalue problem, that allows us to better understand the physical behaviour near the bifurcation points, where we lose the uniqueness of solution. We test this automatic methodology also in the two parameter case, understanding the evolution of the first buckling mode. journal = Journal of Scientific Computing

1 aPichi, Federico1 aRozza, Gianluigi uhttps://arxiv.org/abs/1804.0201400501nas a2200121 4500008004100000245013400041210006900175490000700244100002100251700002000272700002100292856006600313 2018 eng d00aReduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings0 aReduced Basis Approximation and A Posteriori Error Estimation Ap0 v151 aHuynh, D., B. P.1 aPichi, Federico1 aRozza, Gianluigi uhttps://link.springer.com/chapter/10.1007/978-3-319-94676-4_8