In the reduced order modeling (ROM) framework, the solution of a parametric partial differential equation is approximated by combining the high-fidelity solutions of the problem at hand for several properly chosen configurations. Examples of the ROM application, in the naval field, can be found in [31, 24]. Mandatory ingredient for the ROM methods is the relation between the high-fidelity solutions and the parameters. Dealing with geometrical parameters, especially in the industrial context, this relation may be unknown and not trivial (simulations over hand morphed geometries) or very complex (high number of parameters or many nested morphing techniques). To overcome these scenarios, we propose in this contribution an efficient and complete data-driven framework involving ROM techniques for shape design and optimization, extending the pipeline presented in [7]. By applying the singular value decomposition (SVD) to the points coordinates defining the hull geometry –- assuming the topology is inaltered by the deformation –-, we are able to compute the optimal space which the deformed geometries belong to, hence using the modal coefficients as the new parameters we can reconstruct the parametric formulation of the domain. Finally the output of interest is approximated using the proper orthogonal decomposition with interpolation technique. To conclude, we apply this framework to a naval shape design problem where the bulbous bow is morphed to reduce the total resistance of the ship advancing in calm water.

1 aDemo, Nicola1 aTezzele, Marco1 aMola, Andrea1 aRozza, Gianluigi uhttps://arxiv.org/abs/1905.0598202365nas a2200121 4500008004100000245014200041210006900183520189700252100001902149700001702168700002102185856003702206 2019 eng d00aShape optimization through proper orthogonal decomposition with interpolation and dynamic mode decomposition enhanced by active subspaces0 aShape optimization through proper orthogonal decomposition with 3 aWe propose a numerical pipeline for shape optimization in naval engineering involving two different non-intrusive reduced order method (ROM) techniques. Such methods are proper orthogonal decomposition with interpolation (PODI) and dynamic mode decomposition (DMD). The ROM proposed will be enhanced by active subspaces (AS) as a pre-processing tool that reduce the parameter space dimension and suggest better sampling of the input space. We will focus on geometrical parameters describing the perturbation of a reference bulbous bow through the free form deformation (FFD) technique. The ROM are based on a finite volume method (FV) to simulate the multi-phase incompressible flow around the deformed hulls. In previous works we studied the reduction of the parameter space in naval engineering through AS [38, 10] focusing on different parts of the hull. PODI and DMD have been employed for the study of fast and reliable shape optimization cycles on a bulbous bow in [9]. The novelty of this work is the simultaneous reduction of both the input parameter space and the output fields of interest. In particular AS will be trained computing the total drag resistance of a hull advancing in calm water and its gradients with respect to the input parameters. DMD will improve the performance of each simulation of the campaign using only few snapshots of the solution fields in order to predict the regime state of the system. Finally PODI will interpolate the coefficients of the POD decomposition of the output fields for a fast approximation of all the fields at new untried parameters given by the optimization algorithm. This will result in a non-intrusive data-driven numerical optimization pipeline completely independent with respect to the full order solver used and it can be easily incorporated into existing numerical pipelines, from the reference CAD to the optimal shape.

1 aTezzele, Marco1 aDemo, Nicola1 aRozza, Gianluigi uhttps://arxiv.org/abs/1905.05483