In this work we focus on two different methods to deal with parametrized partial differential equations in an efficient and accurate way. Starting from high fidelity approximations built via the hierarchical model reduction discretization, we consider two approaches, both based on a projection model reduction technique. The two methods differ for the algorithm employed during the construction of the reduced basis. In particular, the former employs the proper orthogonal decomposition, while the latter relies on a greedy algorithm according to the certified reduced basis technique. The two approaches are preliminarily compared on two-dimensional scalar and vector test cases.

1 aZancanaro, Matteo1 aBallarin, F.1 aPerotto, Simona1 aRozza, Gianluigi uhttps://www.math.sissa.it/publication/hierarchical-model-reduction-techniques-flow-modeling-parametrized-setting01334nas a2200157 4500008004100000022001400041245010000055210007100155300000800226490000600234520083600240100001901076700001701095700002101112856004301133 2021 eng d a2311-552100aA Monolithic and a Partitioned, Reduced Basis Method for Fluid–Structure Interaction Problems0 aMonolithic and a Partitioned Reduced Basis Method for Fluid–Stru a2290 v63 aThe aim of this work is to present an overview about the combination of the Reduced Basis Method (RBM) with two different approaches for Fluid–Structure Interaction (FSI) problems, namely a monolithic and a partitioned approach. We provide the details of implementation of two reduction procedures, and we then apply them to the same test case of interest. We first implement a reduction technique that is based on a monolithic procedure where we solve the fluid and the solid problems all at once. We then present another reduction technique that is based on a partitioned (or segregated) procedure: the fluid and the solid problems are solved separately and then coupled using a fixed point strategy. The toy problem that we consider is based on the Turek–Hron benchmark test case, with a fluid Reynolds number Re=100.

1 aNonino, Monica1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.mdpi.com/2311-5521/6/6/22901746nas a2200217 4500008004100000020001400041245012200055210006900177260001600246520096600262653003001228653003001258653004101288653002501329653001801354100002701372700001901399700001701418700002101435856007201456 2021 eng d a0898-122100aA Reduced Order Cut Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems0 aReduced Order Cut Finite Element method for geometrically parame c2021/08/12/3 aWe focus on steady and unsteady Navier–Stokes flow systems in a reduced-order modeling framework based on Proper Orthogonal Decomposition within a levelset geometry description and discretized by an unfitted mesh Finite Element Method. This work extends the approaches of [1], [2], [3] to nonlinear CutFEM discretization. We construct and investigate a unified and geometry independent reduced basis which overcomes many barriers and complications of the past, that may occur whenever geometrical morphings are taking place. By employing a geometry independent reduced basis, we are able to avoid remeshing and transformation to reference configurations, and we are able to handle complex geometries. This combination of a fixed background mesh in a fixed extended background geometry with reduced order techniques appears beneficial and advantageous in many industrial and engineering applications, which could not be resolved efficiently in the past.

10aCut Finite Element Method10aNavier–Stokes equations10aParameter–dependent shape geometry10aReduced Order Models10aUnfitted mesh1 aKaratzas, Efthymios, N1 aNonino, Monica1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.sciencedirect.com/science/article/pii/S089812212100279001664nas a2200181 4500008004100000020002200041245016600063210006900229260005200298520089600350100002201246700001801268700001701286700002101303700002201324700001901346856011701365 2021 eng d a978-3-030-55874-100aReduced Order Methods for Parametrized Non-linear and Time Dependent Optimal Flow Control Problems, Towards Applications in Biomedical and Environmental Sciences0 aReduced Order Methods for Parametrized Nonlinear and Time Depend aChambSpringer International Publishingc2021//3 aWe introduce reduced order methods as an efficient strategy to solve parametrized non-linear and time dependent optimal flow control problems governed by partial differential equations. Indeed, the optimal control problems require a huge computational effort in order to be solved, most of all in physical and/or geometrical parametrized settings. Reduced order methods are a reliable and suitable approach, increasingly gaining popularity, to achieve rapid and accurate optimal solutions in several fields, such as in biomedical and environmental sciences. In this work, we employ a POD-Galerkin reduction approach over a parametrized optimality system, derived from the Karush-Kuhn-Tucker conditions. The methodology presented is tested on two boundary control problems, governed respectively by (1) time dependent Stokes equations and (2) steady non-linear Navier-Stokes equations.

1 aStrazzullo, Maria1 aZainib, Zakia1 aBallarin, F.1 aRozza, Gianluigi1 aVermolen, Fred, J1 aVuik, Cornelis uhttps://www.springerprofessional.de/en/reduced-order-methods-for-parametrized-non-linear-and-time-depen/1912267600618nas a2200169 4500008004100000020002200041245016600063210006900229260001300298300001400311490000800325100002200333700001800355700001700373700002100390856003700411 2021 eng d a978-3-030-55873-400aReduced Order Methods for Parametrized Non-linear and Time Dependent Optimal Flow Control Problems, Towards Applications in Biomedical and Environmental Sciences0 aReduced Order Methods for Parametrized Nonlinear and Time Depend bSpringer a841–8500 v1391 aStrazzullo, Maria1 aZainib, Zakia1 aBallarin, F.1 aRozza, Gianluigi uhttps://arxiv.org/abs/1912.0788600632nas a2200169 4500008004100000020001800041245010800059210006900167260003100236300001100267100002100278700002100299700002200320700001900342700001700361856008400378 2020 eng d a978311067149000aBasic ideas and tools for projection-based model reduction of parametric partial differential equations0 aBasic ideas and tools for projectionbased model reduction of par aBerlin, BostonbDe Gruyter a1 - 471 aRozza, Gianluigi1 aHess, Martin, W.1 aStabile, Giovanni1 aTezzele, Marco1 aBallarin, F. uhttps://www.degruyter.com/view/book/9783110671490/10.1515/9783110671490-001.xml01430nas a2200169 4500008004100000245011100041210006900152300001200221490000700233520077800240100001701018700001801035700001701053700001701070700002101087856015201108 2020 eng d00aCertified Reduced Basis VMS-Smagorinsky model for natural convection flow in a cavity with variable height0 aCertified Reduced Basis VMSSmagorinsky model for natural convect a973-9890 v803 aIn this work we present a Reduced Basis VMS-Smagorinsky Boussinesq model, applied to natural convection problems in a variable height cavity, in which the buoyancy forces are involved. We take into account in this problem both physical and geometrical parametrizations, considering the Rayleigh number as a parameter, so as the height of the cavity. We perform an Empirical Interpolation Method to approximate the sub-grid eddy viscosity term that lets us obtain an affine decomposition with respect to the parameters. We construct an a posteriori error estimator, based upon the Brezzi–Rappaz–Raviart theory, used in the greedy algorithm for the selection of the basis functions. Finally we present several numerical tests for different parameter configuration.

1 aBallarin, F.1 aRebollo, T.C.1 aÁvila, E.D.1 aMarmol, M.G.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85085843368&doi=10.1016%2fj.camwa.2020.05.013&partnerID=40&md5=7c6596865ec89651319c7dd97159dd7701671nas a2200181 4500008004100000020002200041245012000063210006900183260004400252300001400296520095800310100001901268700001701287700002201304700001701326700002101343856012501364 2020 eng d a978-3-030-30705-900aThe Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: from Laminar to Turbulent Flows0 aEffort of Increasing Reynolds Number in ProjectionBased Reduced aChambSpringer International Publishing a245–2643 aWe present in this double contribution two different reduced order strategies for incompressible parameterized Navier-Stokes equations characterized by varying Reynolds numbers. The first strategy deals with low Reynolds number (laminar flow) and is based on a stabilized finite element method during the offline stage followed by a Galerkin projection on reduced basis spaces generated by a greedy algorithm. The second methodology is based on a full order finite volume discretization. The latter methodology will be used for flows with moderate to high Reynolds number characterized by turbulent patterns. For the treatment of the mentioned turbulent flows at the reduced order level, a new POD-Galerkin approach is proposed. The new approach takes into consideration the contribution of the eddy viscosity also during the online stage and is based on the use of interpolation. The two methodologies are tested on classic benchmark test cases.

1 aHijazi, Saddam1 aAli, Shafqat1 aStabile, Giovanni1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.math.sissa.it/publication/effort-increasing-reynolds-number-projection-based-reduced-order-methods-laminar-001633nas a2200121 4500008004100000245014500041210006900186520106800255100002201323700001701345700002101362856012801383 2020 eng d00aPOD-Galerkin Model Order Reduction for Parametrized Nonlinear Time Dependent Optimal Flow Control: an Application to Shallow Water Equations0 aPODGalerkin Model Order Reduction for Parametrized Nonlinear Tim3 aIn this work we propose reduced order methods as a reliable strategy to efficiently solve parametrized optimal control problems governed by shallow waters equations in a solution tracking setting. The physical parametrized model we deal with is nonlinear and time dependent: this leads to very time consuming simulations which can be unbearable e.g. in a marine environmental monitoring plan application. Our aim is to show how reduced order modelling could help in studying different configurations and phenomena in a fast way. After building the optimality system, we rely on a POD-Galerkin reduction in order to solve the optimal control problem in a low dimensional reduced space. The presented theoretical framework is actually suited to general nonlinear time dependent optimal control problems. The proposed methodology is finally tested with a numerical experiment: the reduced optimal control problem governed by shallow waters equations reproduces the desired velocity and height profiles faster than the standard model, still remaining accurate.

1 aStrazzullo, Maria1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.math.sissa.it/publication/pod-galerkin-model-order-reduction-parametrized-nonlinear-time-dependent-optimal-flow01839nas a2200133 4500008004100000245014300041210007100184490000700255520124500262100002201507700001701529700002101546856013801567 2020 eng d00aPOD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation0 aPOD–Galerkin Model Order Reduction for Parametrized Time Depende0 v833 aIn this work we deal with parametrized time dependent optimal control problems governed by partial differential equations. We aim at extending the standard saddle point framework of steady constraints to time dependent cases. We provide an analysis of the well-posedness of this formulation both for parametrized scalar parabolic constraint and Stokes governing equations and we propose reduced order methods as an effective strategy to solve them. Indeed, on one hand, parametrized time dependent optimal control is a very powerful mathematical model which is able to describe several physical phenomena, on the other, it requires a huge computational effort. Reduced order methods are a suitable approach to have rapid and accurate simulations. We rely on POD–Galerkin reduction over the physical and geometrical parameters of the optimality system in a space-time formulation. Our theoretical results and our methodology are tested on two examples: a boundary time dependent optimal control for a Graetz flow and a distributed optimal control governed by time dependent Stokes equations. With these two test cases the convenience of the reduced order modelling is further extended to the field of time dependent optimal control.

1 aStrazzullo, Maria1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.math.sissa.it/publication/pod%E2%80%93galerkin-model-order-reduction-parametrized-time-dependent-linear-quadratic-optimal01515nas a2200145 4500008004100000245009800041210006900139300001200208490000700220520092500227100002701152700001701179700002101196856015201217 2020 eng d00aProjection-based reduced order models for a cut finite element method in parametrized domains0 aProjectionbased reduced order models for a cut finite element me a833-8510 v793 aThis work presents a reduced order modeling technique built on a high fidelity embedded mesh finite element method. Such methods, and in particular the CutFEM method, are attractive in the generation of projection-based reduced order models thanks to their capabilities to seamlessly handle large deformations of parametrized domains and in general to handle topological changes. The combination of embedded methods and reduced order models allows us to obtain fast evaluation of parametrized problems, avoiding remeshing as well as the reference domain formulation, often used in the reduced order modeling for boundary fitted finite element formulations. The resulting novel methodology is presented on linear elliptic and Stokes problems, together with several test cases to assess its capability. The role of a proper extension and transport of embedded solutions to a common background is analyzed in detail.

1 aKaratzas, Efthymios, N1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070900852&doi=10.1016%2fj.camwa.2019.08.003&partnerID=40&md5=2d222ab9c7832955d155655d3c93e1b102309nas a2200313 4500008004100000020001400041245013100055210006900186260001500255300001000270490000800280520128800288653003401576653002201610653001701632653002101649653002601670653001701696653003301713653003601746653002601782100001801808700001701826700002401843700002001867700002501887700002101912856006201933 2020 eng d a2040-793900aReduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation0 aReduced order methods for parametric optimal flow control in cor c2020/05/27 ae33670 vn/a3 aAbstract Coronary artery bypass grafts (CABG) surgery is an invasive procedure performed to circumvent partial or complete blood flow blockage in coronary artery disease. In this work, we apply a numerical optimal flow control model to patient-specific geometries of CABG, reconstructed from clinical images of real-life surgical cases, in parameterized settings. The aim of these applications is to match known physiological data with numerical hemodynamics corresponding to different scenarios, arisen by tuning some parameters. Such applications are an initial step toward matching patient-specific physiological data in patient-specific vascular geometries as best as possible. Two critical challenges that reportedly arise in such problems are: (a) lack of robust quantification of meaningful boundary conditions required to match known data as best as possible and (b) high computational cost. In this work, we utilize unknown control variables in the optimal flow control problems to take care of the first challenge. Moreover, to address the second challenge, we propose a time-efficient and reliable computational environment for such parameterized problems by projecting them onto a low-dimensional solution manifold through proper orthogonal decomposition-Galerkin.

10acoronary artery bypass grafts10adata assimilation10aflow control10aGalerkin methods10ahemodynamics modeling10aOptimization10apatient-specific simulations10aProper orthogonal decomposition10areduced order methods1 aZainib, Zakia1 aBallarin, F.1 aFremes, Stephen, E.1 aTriverio, Piero1 aJiménez-Juan, Laura1 aRozza, Gianluigi uhttps://onlinelibrary.wiley.com/doi/10.1002/cnm.3367?af=R01963nas a2200145 4500008004100000245009800041210006900139300001400208490000700222520138100229100001701610700001701627700002101644856015201665 2020 eng d00aStabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations0 aStabilized reduced basis methods for parametrized steady Stokes a2399-24160 v803 aIt is well known in the Reduced Basis approximation of saddle point problems that the Galerkin projection on the reduced space does not guarantee the inf–sup approximation stability even if a stable high fidelity method was used to generate snapshots. For problems in computational fluid dynamics, the lack of inf–sup stability is reflected by the inability to accurately approximate the pressure field. In this context, inf–sup stability is usually recovered through the enrichment of the velocity space with suitable supremizer functions. The main goal of this work is to propose an alternative approach, which relies on the residual based stabilization techniques customarily employed in the Finite Element literature, such as Brezzi–Pitkaranta, Franca–Hughes, streamline upwind Petrov–Galerkin, Galerkin Least Square. In the spirit of offline–online reduced basis computational splitting, two such options are proposed, namely offline-only stabilization and offline–online stabilization. These approaches are then compared to (and combined with) the state of the art supremizer enrichment approach. Numerical results are discussed, highlighting that the proposed methodology allows to obtain smaller reduced basis spaces (i.e., neglecting supremizer enrichment) for which a modified inf–sup stability is still preserved at the reduced order level.

1 aAli, Shafqat1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85083340115&doi=10.1016%2fj.camwa.2020.03.019&partnerID=40&md5=7ace96eee080701acb04d8155008dd7d01658nas a2200157 4500008004100000245009100041210006900132300001200201490000800213520106300221100001701284700001701301700002001318700002101338856014101359 2019 eng d00aA POD-selective inverse distance weighting method for fast parametrized shape morphing0 aPODselective inverse distance weighting method for fast parametr a860-8840 v1173 aEfficient shape morphing techniques play a crucial role in the approximation of partial differential equations defined in parametrized domains, such as for fluid-structure interaction or shape optimization problems. In this paper, we focus on inverse distance weighting (IDW) interpolation techniques, where a reference domain is morphed into a deformed one via the displacement of a set of control points. We aim at reducing the computational burden characterizing a standard IDW approach without significantly compromising the accuracy. To this aim, first we propose an improvement of IDW based on a geometric criterion that automatically selects a subset of the original set of control points. Then, we combine this new approach with a dimensionality reduction technique based on a proper orthogonal decomposition of the set of admissible displacements. This choice further reduces computational costs. We verify the performances of the new IDW techniques on several tests by investigating the trade-off reached in terms of accuracy and efficiency.

1 aBallarin, F.1 aD'Amario, A.1 aPerotto, Simona1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056396233&doi=10.1002%2fnme.5982&partnerID=40&md5=6aabcbdc9a0da25e36575a0ebfac034f01735nas a2200157 4500008004100000245007200041210006900113300001400182490000700196520114500203100002201348700001701370700001801387700002101405856015101426 2019 eng d00aA reduced order variational multiscale approach for turbulent flows0 areduced order variational multiscale approach for turbulent flow a2349-23680 v453 aThe purpose of this work is to present different reduced order model strategies starting from full order simulations stabilized using a residual-based variational multiscale (VMS) approach. The focus is on flows with moderately high Reynolds numbers. The reduced order models (ROMs) presented in this manuscript are based on a POD-Galerkin approach. Two different reduced order models are presented, which differ on the stabilization used during the Galerkin projection. In the first case, the VMS stabilization method is used at both the full order and the reduced order levels. In the second case, the VMS stabilization is used only at the full order level, while the projection of the standard Navier-Stokes equations is performed instead at the reduced order level. The former method is denoted as consistent ROM, while the latter is named non-consistent ROM, in order to underline the different choices made at the two levels. Particular attention is also devoted to the role of inf-sup stabilization by means of supremizers in ROMs based on a VMS formulation. Finally, the developed methods are tested on a numerical benchmark.

1 aStabile, Giovanni1 aBallarin, F.1 aZuccarino, G.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068076665&doi=10.1007%2fs10444-019-09712-x&partnerID=40&md5=af0142e6d13bbc2e88c6f31750aef6ad01594nas a2200145 4500008004100000245006300041210006100104300001200165490000700177520106000184100001601244700001701260700002101277856015001298 2019 eng d00aA Weighted POD Method for Elliptic PDEs with Random Inputs0 aWeighted POD Method for Elliptic PDEs with Random Inputs a136-1530 v813 aIn this work we propose and analyze a weighted proper orthogonal decomposition method to solve elliptic partial differential equations depending on random input data, for stochastic problems that can be transformed into parametric systems. The algorithm is introduced alongside the weighted greedy method. Our proposed method aims to minimize the error in a L2 norm and, in contrast to the weighted greedy approach, it does not require the availability of an error bound. Moreover, we consider sparse discretization of the input space in the construction of the reduced model; for high-dimensional problems, provided the sampling is done accordingly to the parameters distribution, this enables a sensible reduction of computational costs, while keeping a very good accuracy with respect to high fidelity solutions. We provide many numerical tests to assess the performance of the proposed method compared to an equivalent reduced order model without weighting, as well as to the weighted greedy approach, in both low and high dimensional problems.

1 a.Venturi, L1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053798049&doi=10.1007%2fs10915-018-0830-7&partnerID=40&md5=5cad501b6ef1955da55868807079ee5d01267nas a2200145 4500008004100000245010200041210006900143300001000212520067900222100001600901700001400917700001700931700002100948856015200969 2019 eng d00aWeighted Reduced Order Methods for Parametrized Partial Differential Equations with Random Inputs0 aWeighted Reduced Order Methods for Parametrized Partial Differen a27-403 aIn this manuscript we discuss weighted reduced order methods for stochastic partial differential equations. Random inputs (such as forcing terms, equation coefficients, boundary conditions) are considered as parameters of the equations. We take advantage of the resulting parametrized formulation to propose an efficient reduced order model; we also profit by the underlying stochastic assumption in the definition of suitable weights to drive to reduction process. Two viable strategies are discussed, namely the weighted reduced basis method and the weighted proper orthogonal decomposition method. A numerical example on a parametrized elasticity problem is shown.

1 aVenturi, L.1 aTorlo, D.1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084009379&doi=10.1007%2f978-3-030-04870-9_2&partnerID=40&md5=446bcc1f331167bbba67bc00fb17015000580nas a2200133 4500008004100000245012400041210006900165260001300234300001400247100001900261700001700280700002100297856012800318 2018 eng d00aCombined parameter and model reduction of cardiovascular problems by means of active subspaces and POD-Galerkin methods0 aCombined parameter and model reduction of cardiovascular problem bSpringer a185–2071 aTezzele, Marco1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.math.sissa.it/publication/combined-parameter-and-model-reduction-cardiovascular-problems-means-active-subspaces00505nas a2200145 4500008004100000245011100041210006900152300001600221490000700237100002200244700001700266700001600283700002100299856003900320 2018 eng d00aModel Reduction for Parametrized Optimal Control Problems in Environmental Marine Sciences and Engineering0 aModel Reduction for Parametrized Optimal Control Problems in Env aB1055-B10790 v401 aStrazzullo, Maria1 aBallarin, F.1 aMosetti, R.1 aRozza, Gianluigi uhttps://doi.org/10.1137/17M115059101436nas a2200145 4500008004100000245011100041210006900152300001400221490000600235520085400241100001401095700001701109700002101126856014301147 2018 eng d00aStabilized weighted reduced basis methods for parametrized advection dominated problems with random inputs0 aStabilized weighted reduced basis methods for parametrized advec a1475-15020 v63 aIn this work, we propose viable and eficient strategies for stabilized parametrized advection dominated problems, with random inputs. In particular, we investigate the combination of the wRB (weighted reduced basis) method for stochastic parametrized problems with the stabilized RB (reduced basis) method, which is the integration of classical stabilization methods (streamline/upwind Petrov-Galerkin (SUPG) in our case) in the ofine-online structure of the RB method. Moreover, we introduce a reduction method that selectively enables online stabilization; this leads to a sensible reduction of computational costs, while keeping a very good accuracy with respect to high-fdelity solutions. We present numerical test cases to assess the performance of the proposed methods in steady and unsteady problems related to heat transfer phenomena.

1 aTorlo, D.1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85058246502&doi=10.1137%2f17M1163517&partnerID=40&md5=6c54e2f0eb727cb85060e988486b8ac800572nas a2200157 4500008004100000245006200041210005700103300001400160490000700174100001800181700001700199700001700216700001700233700002100250856014300271 2017 eng d00aOn a certified smagorinsky reduced basis turbulence model0 acertified smagorinsky reduced basis turbulence model a3047-30670 v551 aRebollo, T.C.1 aÁvila, E.D.1 aMarmol, M.G.1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85039928218&doi=10.1137%2f17M1118233&partnerID=40&md5=221d9cd2bcc74121fcef93efd9d3d76c00704nas a2200181 4500008004100000245009900041210006900140300001400209490000700223100001700230700002000247700002000267700002200287700002100309700002000330700002200350856015000372 2017 eng d00aNumerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts0 aNumerical modeling of hemodynamics scenarios of patientspecific a1373-13990 v161 aBallarin, F.1 aFaggiano, Elena1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi1 aIppolito, Sonia1 aScrofani, Roberto uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85015065851&doi=10.1007%2fs10237-017-0893-7&partnerID=40&md5=c388f20bd5de14187bad9ed7d9affbd001239nas a2200205 4500008004100000245008100041210006900122260003800191300001400229520059600243100001700839700002100856700001600877700001800893700002100911700002000932700002100952700001900973856004100992 2017 eng d00aReduced-order semi-implicit schemes for fluid-structure interaction problems0 aReducedorder semiimplicit schemes for fluidstructure interaction bSpringer International Publishing a149–1673 aPOD–Galerkin reduced-order models (ROMs) for fluid-structure interaction problems (incompressible fluid and thin structure) are proposed in this paper. Both the high-fidelity and reduced-order methods are based on a Chorin-Temam operator-splitting approach. Two different reduced-order methods are proposed, which differ on velocity continuity condition, imposed weakly or strongly, respectively. The resulting ROMs are tested and compared on a representative haemodynamics test case characterized by wave propagation, in order to assess the capabilities of the proposed strategies.

1 aBallarin, F.1 aRozza, Gianluigi1 aMaday, Yvon1 aBenner, Peter1 aOhlberger, Mario1 aPatera, Anthony1 aRozza, Gianluigi1 aUrban, Karsten uhttps://www.math.sissa.it/node/1294802105nas a2200217 4500008004100000245018600041210006900227260003600296520123100332100002501563700001701588700002001605700001701625700001901642700002101661700002101682700002101703700001701724700001601741856013001757 2016 en d00aAdvances in geometrical parametrization and reduced order models and methods for computational fluid dynamics problems in applied sciences and engineering: overview and perspectives0 aAdvances in geometrical parametrization and reduced order models aCrete, GreecebECCOMASc06/20163 aSeveral problems in applied sciences and engineering require reduction techniques in order to allow computational tools to be employed in the daily practice, especially in iterative procedures such as optimization or sensitivity analysis. Reduced order methods need to face increasingly complex problems in computational mechanics, especially into a multiphysics setting. Several issues should be faced: stability of the approximation, efficient treatment of nonlinearities, uniqueness or possible bifurcations of the state solutions, proper coupling between fields, as well as offline-online computing, computational savings and certification of errors as measure of accuracy. Moreover, efficient geometrical parametrization techniques should be devised to efficiently face shape optimization problems, as well as shape reconstruction and shape assimilation problems. A related aspect deals with the management of parametrized interfaces in multiphysics problems, such as fluid-structure interaction problems, and also a domain decomposition based approach for complex parametrized networks. We present some illustrative industrial and biomedical problems as examples of recent advances on methodological developments.

1 aSalmoiraghi, Filippo1 aBallarin, F.1 aCorsi, Giovanni1 aMola, Andrea1 aTezzele, Marco1 aRozza, Gianluigi1 aPapadrakakis, M.1 aPapadopoulos, V.1 aStefanou, G.1 aPlevris, V. uhttps://www.math.sissa.it/publication/advances-geometrical-parametrization-and-reduced-order-models-and-methods-computational01710nas a2200193 4500008004100000245011900041210006900160260001400229520106200243100001701305700002001322700002001342700002101362700002201383700002001405700002201425700001801447856005101465 2016 en d00aA fast virtual surgery platform for many scenarios haemodynamics of patient-specific coronary artery bypass grafts0 afast virtual surgery platform for many scenarios haemodynamics o bSubmitted3 aA fast computational framework is devised to the study of several configurations of patient-specific coronary artery bypass grafts. This is especially useful to perform a sensitivity analysis of the haemodynamics for different flow conditions occurring in native coronary arteries and bypass grafts, the investigation of the progression of the coronary artery disease and the choice of the most appropriate surgical procedure. A complete pipeline, from the acquisition of patientspecific medical images to fast parametrized computational simulations, is proposed. Complex surgical configurations employed in the clinical practice, such as Y-grafts and sequential grafts, are studied. A virtual surgery platform based on model reduction of unsteady Navier Stokes equations for blood dynamics is proposed to carry out sensitivity analyses in a very rapid and reliable way. A specialized geometrical parametrization is employed to compare the effect of stenosis and anastomosis variation on the outcome of the surgery in several relevant cases.1 aBallarin, F.1 aFaggiano, Elena1 aManzoni, Andrea1 aRozza, Gianluigi1 aQuarteroni, Alfio1 aIppolito, Sonia1 aScrofani, Roberto1 aAntona, Carlo uhttp://urania.sissa.it/xmlui/handle/1963/3524001402nas a2200145 4500008004100000245011900041210006900160260007700229520081900306100002501125700001701150700001701167700002101184856005101205 2016 en d00aIsogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes0 aIsogeometric analysisbased reduced order modelling for incompres bSpringer, AMOS Advanced Modelling and Simulation in Engineering Sciences3 aIn this work we provide a combination of isogeometric analysis with reduced order modelling techniques, based on proper orthogonal decomposition, to guarantee computational reduction for the numerical model, and with free-form deformation, for versatile geometrical parametrization. We apply it to computational fluid dynamics problems considering a Stokes flow model. The proposed reduced order model combines efficient shape deformation and accurate and stable velocity and pressure approximation for incompressible viscous flows, computed with a reduced order method. Efficient offine-online computational decomposition is guaranteed in view of repetitive calculations for parametric design and optimization problems. Numerical test cases show the efficiency and accuracy of the proposed reduced order model.1 aSalmoiraghi, Filippo1 aBallarin, F.1 aHeltai, Luca1 aRozza, Gianluigi uhttp://urania.sissa.it/xmlui/handle/1963/3519901495nas a2200121 4500008004100000245010500041210007100146260001000217520097200227100001701199700002101216856013601237 2016 en d00aPOD–Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems0 aPOD–Galerkin monolithic reduced order models for parametrized fl bWiley3 aIn this paper we propose a monolithic approach for reduced order modelling of parametrized fluid-structure interaction problems based on a proper orthogonal decomposition (POD)–Galerkin method. Parameters of the problem are related to constitutive properties of the fluid or structural problem, or to geometrical parameters related to the domain configuration at the initial time. We provide a detailed description of the parametrized formulation of the multiphysics problem in its components, together with some insights on how to obtain an offline-online efficient computational procedure through the approximation of parametrized nonlinear tensors. Then, we present the monolithic POD–Galerkin method for the online computation of the global structural displacement, fluid velocity and pressure of the coupled problem. Finally, we show some numerical results to highlight the capabilities of the proposed reduced order method and its computational performances1 aBallarin, F.1 aRozza, Gianluigi uhttps://www.math.sissa.it/publication/pod%E2%80%93galerkin-monolithic-reduced-order-models-parametrized-fluid-structure-interaction01813nas a2200169 4500008004100000245015600041210006900197520118400266100001701450700002001467700002001487700002001507700002201527700002101549700002201570856005101592 2015 en d00aFast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization0 aFast simulations of patientspecific haemodynamics of coronary ar3 aIn this work a reduced-order computational framework for the study of haemodynamics in three-dimensional patient-specific configurations of coronary artery bypass grafts dealing with a wide range of scenarios is proposed. We combine several efficient algorithms to face at the same time both the geometrical complexity involved in the description of the vascular network and the huge computational cost entailed by time dependent patient-specific flow simulations. Medical imaging procedures allow to reconstruct patient-specific configurations from clinical data. A centerlines-based parametrization is proposed to efficiently handle geometrical variations. POD–Galerkin reduced-order models are employed to cut down large computational costs. This computational framework allows to characterize blood flows for different physical and geometrical variations relevant in the clinical practice, such as stenosis factors and anastomosis variations, in a rapid and reliable way. Several numerical results are discussed, highlighting the computational performance of the proposed framework, as well as its capability to perform sensitivity analysis studies, so far out of reach.1 aBallarin, F.1 aFaggiano, Elena1 aIppolito, Sonia1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi1 aScrofani, Roberto uhttp://urania.sissa.it/xmlui/handle/1963/3462300682nas a2200145 4500008004100000245009900041210006900140260001000209520018600219100001700405700002000422700002200442700002100464856005100485 2015 en d00aSupremizer stabilization of POD-Galerkin approximation of parametrized Navier-Stokes equations0 aSupremizer stabilization of PODGalerkin approximation of paramet bWiley3 aIn this work, we present a stable proper orthogonal decomposition–Galerkin approximation for parametrized steady incompressible Navier–Stokes equations with low Reynolds number.1 aBallarin, F.1 aManzoni, Andrea1 aQuarteroni, Alfio1 aRozza, Gianluigi uhttp://urania.sissa.it/xmlui/handle/1963/3470101619nas a2200145 4500008004100000245010700041210006900148260001300217520111600230100001701346700002001363700002101383700001801404856005101422 2014 en d00aShape Optimization by Free-Form Deformation: Existence Results and Numerical Solution for Stokes Flows0 aShape Optimization by FreeForm Deformation Existence Results and bSpringer3 aShape optimization problems governed by PDEs result from many applications in computational fluid dynamics. These problems usually entail very large computational costs and require also a suitable approach for representing and deforming efficiently the shape of the underlying geometry, as well as for computing the shape gradient of the cost functional to be minimized. Several approaches based on the displacement of a set of control points have been developed in the last decades, such as the so-called free-form deformations. In this paper we present a new theoretical result which allows to recast free-form deformations into the general class of perturbation of identity maps, and to guarantee the compactness of the set of admissible shapes. Moreover, we address both a general optimization framework based on the continuous shape gradient and a numerical procedure for solving efficiently three-dimensional optimal design problems. This framework is applied to the optimal design of immersed bodies in Stokes flows, for which we consider the numerical solution of a benchmark case study from literature.1 aBallarin, F.1 aManzoni, Andrea1 aRozza, Gianluigi1 aSalsa, Sandro uhttp://urania.sissa.it/xmlui/handle/1963/34698