01000nas a2200133 4500008004300000245005100043210005100094260002100145520060100166100001800767700002500785700002000810856003600830 2011 en_Ud 00aLarge Time Existence for Thin Vibrating Plates0 aLarge Time Existence for Thin Vibrating Plates bTaylor & Francis3 aWe construct strong solutions for a nonlinear wave equation for a thin vibrating plate described by nonlinear elastodynamics. For sufficiently small thickness we obtain existence of strong solutions for large\\r\\ntimes under appropriate scaling of the initial values such that the limit system as h --> 0 is either the nonlinear von Karman plate equation or the linear fourth order Germain-Lagrange equation. In the case of the\\r\\nlinear Germain-Lagrange equation we even obtain a convergence rate of the three-dimensional solution to the solution of the two-dimensional linear plate equation.1 aAbels, Helmut1 aMora, Maria Giovanna1 aMüller, Stefan uhttp://hdl.handle.net/1963/375500881nas a2200133 4500008004300000245008900043210007100132260001300203520043200216100001800648700002500666700002000691856003600711 2011 en_Ud 00aThe time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity0 atimedependent von Kármán plate equation as a limit of 3d nonline bSpringer3 aThe asymptotic behaviour of the solutions of three-dimensional nonlinear elastodynamics in a thin plate is studied, as the thickness $h$ of the plate tends to zero. Under appropriate scalings of the applied force and of the initial values in terms of $h$, it is shown that three-dimensional solutions of the nonlinear elastodynamic equation converge to solutions of the time-dependent von K\\\\\\\'arm\\\\\\\'an plate equation.1 aAbels, Helmut1 aMora, Maria Giovanna1 aMüller, Stefan uhttp://hdl.handle.net/1963/3835