00417nas a2200121 4500008004100000245007300041210006900114260001800183100002100201700001800222700001900240856003600259 2001 en d00aBihamiltonian geometry and separation of variables for Toda lattices0 aBihamiltonian geometry and separation of variables for Toda latt bSISSA Library1 aFalqui, Gregorio1 aMagri, Franco1 aPedroni, Marco uhttp://hdl.handle.net/1963/135400454nas a2200133 4500008004100000245007600041210006900117260001800186100002100204700001800225700001900243700002200262856003600284 2000 en d00aA bi-Hamiltonian theory for stationary KDV flows and their separability0 abiHamiltonian theory for stationary KDV flows and their separabi bSISSA Library1 aFalqui, Gregorio1 aMagri, Franco1 aPedroni, Marco1 aZubelli, Jorge P. uhttp://hdl.handle.net/1963/135200863nas a2200145 4500008004300000245008500043210006900128260001300197520039100210100002100601700001800622700001900640700002200659856003600681 2000 en_Ud 00aAn elementary approach to the polynomial $\\\\tau$-functions of the KP Hierarchy0 aelementary approach to the polynomial taufunctions of the KP Hie bSpringer3 aWe give an elementary construction of the solutions of the KP hierarchy associated with polynomial τ-functions starting with a geometric approach to soliton equations based on the concept of a bi-Hamiltonian system. As a consequence, we establish a Wronskian formula for the polynomial τ-functions of the KP hierarchy. This formula, known in the literature, is obtained very directly.1 aFalqui, Gregorio1 aMagri, Franco1 aPedroni, Marco1 aZubelli, Jorge P. uhttp://hdl.handle.net/1963/322300781nas a2200133 4500008004300000245011000043210006900153260001300222520032300235100002100558700001800579700001400597856003600611 2000 en_Ud 00aReduction of bi-Hamiltonian systems and separation of variables: an example from the Boussinesq hierarchy0 aReduction of biHamiltonian systems and separation of variables a bSpringer3 aWe discuss the Boussinesq system with $t_5$ stationary, within a general framework for the analysis of stationary flows of n-Gel\\\'fand-Dickey hierarchies. We show how a careful use of its bihamiltonian structure can be used to provide a set of separation coordinates for the corresponding Hamilton--Jacobi equations.1 aFalqui, Gregorio1 aMagri, Franco1 aTondo, G. uhttp://hdl.handle.net/1963/321900585nas a2200133 4500008004300000245006900043210006700112260002100179520015700200100002100357700001800378700001900396856003600415 1999 en_Ud 00aA bihamiltonian approach to separation of variables in mechanics0 abihamiltonian approach to separation of variables in mechanics bWorld Scientific3 aThis paper is a report on a recent approach to the theory of separability of the Hamilton-Jacobi equations from the viewpoint of bihamiltonian geometry.1 aFalqui, Gregorio1 aMagri, Franco1 aPedroni, Marco uhttp://hdl.handle.net/1963/322201398nas a2200133 4500008004100000245006400041210006000105260001300165520099200178100002101170700001801191700001901209856003601228 1999 en d00aThe method of Poisson pairs in the theory of nonlinear PDEs0 amethod of Poisson pairs in the theory of nonlinear PDEs bSpringer3 aThe aim of these lectures is to show that the methods of classical Hamiltonian mechanics can be profitably used to solve certain classes of nonlinear partial differential equations. The prototype of these equations is the well-known Korteweg-de Vries (KdV) equation.\\nIn these lectures we touch the following subjects:\\ni) the birth and the role of the method of Poisson pairs inside the theory of the KdV equation;\\nii) the theoretical basis of the method of Poisson pairs;\\niii) the Gel\\\'fand-Zakharevich theory of integrable systems on bi-Hamiltonian manifolds;\\niv) the Hamiltonian interpretation of the Sato picture of the KdV flows and of its linearization on an infinite-dimensional Grassmannian manifold.\\nv) the reduction technique(s) and its use to construct classes of solutions;\\nvi) the role of the technique of separation of variables in the study of the reduced systems;\\nvii) some relations intertwining the method of Poisson pairs with the method of Lax pairs.1 aFalqui, Gregorio1 aMagri, Franco1 aPedroni, Marco uhttp://hdl.handle.net/1963/1350