*Peristalsis*, i.e., a motion pattern arising from the propagation of muscle contraction and expansion waves along the body, is a common locomotion strategy for limbless animals. Mimicking peristalsis in bio-inspired robots has attracted considerable attention in the literature. It has recently been observed that maximal velocity in a metameric earthworm-like robot is achieved by actuating the segments using a “phase coordination” principle. This paper shows that, in fact, peristalsis (which requires not only phase coordination, but also that all segments oscillate at same frequency and amplitude) emerges from optimization principles. More precisely, basing our analysis on the assumption of small deformations, we show that peristaltic waves provide the optimal actuation solution in the ideal case of a periodic infinite system, and that this is approximately true, modulo edge effects, for the real, finite length system. Therefore, this paper confirms the effectiveness of mimicking peristalsis in bio-inspired robots, at least in the small-deformation regime. Further research will be required to test the effectiveness of this strategy if large deformations are allowed.

We discuss connections between low-Reynolds-number swimming and geometric control theory, and present a general algorithm for the numerical computation of energetically optimal strokes. As an illustration of our approach, we show computed motility maps and optimal strokes for two model swimmers.

10aNumerical analysis.1 aDeSimone, Antonio1 aHeltai, Luca1 aAlouges, François1 aAline, Lefebvre-Lepot uhttp://hdl.handle.net/1963/644500977nas a2200145 4500008004300000245007900043210006900122260002100191520050000212653002100712100002300733700002200756700001700778856003600795 2011 en_Ud 00aNumerical Strategies for Stroke Optimization of Axisymmetric Microswimmers0 aNumerical Strategies for Stroke Optimization of Axisymmetric Mic bWorld Scientific3 aWe propose a computational method to solve optimal swimming problems, based on the boundary integral formulation of the hydrodynamic interaction between swimmer and surrounding fluid and direct constrained minimization of the energy consumed by the swimmer. We apply our method to axisymmetric model examples. We consider a classical model swimmer (the three-sphere swimmer of Golestanian et al.) as well as a novel axisymmetric swimmer inspired by the observation of biological micro-organisms.10aOptimal swimming1 aAlouges, François1 aDeSimone, Antonio1 aHeltai, Luca uhttp://hdl.handle.net/1963/365701187nas a2200145 4500008004300000245004000043210004000083520078100123100002300904700002200927700001700949700002000966700001900986856003601005 2010 en_Ud 00aOptimally swimming Stokesian Robots0 aOptimally swimming Stokesian Robots3 aWe study self propelled stokesian robots composed of assemblies of balls, in dimen-\\nsions 2 and 3, and prove that they are able to control their position and orientation. This is a result of controllability, and its proof relies on applying Chow\\\'s theorem in an analytic framework, similarly to what has been done in [3] for an axisymmetric system swimming along the axis of symmetry. However, we simplify drastically\\nthe analyticity result given in [3] and apply it to a situation where more complex swimmers move either in a plane or in three-dimensional space, hence experiencing also rotations. We then focus our attention on energetically optimal strokes, which we are able to compute numerically. Some examples of computed optimal strokes are discussed in detail.1 aAlouges, François1 aDeSimone, Antonio1 aHeltai, Luca1 aLefebvre, Aline1 aMerlet, Benoit uhttp://hdl.handle.net/1963/392900396nas a2200109 4500008004300000245007300043210006900116100002200185700002300207700002000230856003600250 2009 en_Ud 00aBiological Fluid Dynamics, Non-linear Partial Differential Equations0 aBiological Fluid Dynamics Nonlinear Partial Differential Equatio1 aDeSimone, Antonio1 aAlouges, François1 aLefebvre, Aline uhttp://hdl.handle.net/1963/263001131nas a2200133 4500008004300000245006500043210006400108260001300172520071100185100002300896700002200919700002000941856003600961 2008 en_Ud 00aOptimal Strokes for Low Reynolds Number Swimmers: An Example0 aOptimal Strokes for Low Reynolds Number Swimmers An Example bSpringer3 aSwimming, i.e., being able to advance in the absence of external forces by performing cyclic shape changes, is particularly demanding at low Reynolds numbers. This is the regime of interest for micro-organisms and micro- or nano-robots. We focus in this paper on a simple yet representative example: the three-sphere swimmer of Najafi and Golestanian (Phys. Rev. E, 69, 062901-062904, 2004). For this system, we show how to cast the problem of swimming in the language of control theory, prove global controllability (which implies that the three-sphere swimmer can indeed swim), and propose a numerical algorithm to compute optimal strokes (which turn out to be suitably defined sub-Riemannian geodesics).1 aAlouges, François1 aDeSimone, Antonio1 aLefebvre, Aline uhttp://hdl.handle.net/1963/400601258nas a2200145 4500008004300000245008600043210006900129260001700198520078200215100002300997700001801020700002201038700001601060856003601076 2004 en_Ud 00aEnergetics and switching of quasi-uniform states in small ferromagnetic particles0 aEnergetics and switching of quasiuniform states in small ferroma bEDP Sciences3 aWe present a numerical algorithm to solve the micromagnetic equations based on tangential-plane minimization for the magnetization update and a homothethic-layer decomposition of outer space for the computation of the demagnetization field. As a first application, detailed results on the flower-vortex transition in the cube of Micromagnetic Standard Problem number 3 are obtained, which confirm, with a different method, those already present in the literature, and validate our method and code. We then turn to switching of small cubic or almost-cubic particles, in the single-domain limit. Our data show systematic deviations from the Stoner-Wohlfarth model due to the non-ellipsoidal shape of the particle, and in particular a non-monotone dependence on the particle size.1 aAlouges, François1 aConti, Sergio1 aDeSimone, Antonio1 aPokern, Ivo uhttp://hdl.handle.net/1963/2999