00444nas a2200121 4500008004300000245009700043210006900140100001700209700001800226700002200244700002000266856003600286 2008 en_Ud 00aRelaxation of some transversally isotropic energies and applications to smectic A elastomers0 aRelaxation of some transversally isotropic energies and applicat1 aAdams, James1 aConti, Sergio1 aDeSimone, Antonio1 aDolzmann, Georg uhttp://hdl.handle.net/1963/191200945nas a2200121 4500008004300000245006300043210006300106520056100169100002200730700001700752700001800769856003600787 2007 en_Ud 00aSoft elasticity and microstructure in smectic C elastomers0 aSoft elasticity and microstructure in smectic C elastomers3 aSmectic C elastomers are layered materials exhibiting a solid-like elastic response along the layer normal and a rubbery one in the plane. The set of strains minimizing the elastic energy contains a one-parameter family of simple stretches associated with an internal degree of freedom, coming from the in-plane component of the director. We investigate soft elasticity and the corresponding microstructure by determining the quasiconvex hull of the set , and use this to propose experimental tests that should make the predicted soft response observable.1 aDeSimone, Antonio1 aAdams, James1 aConti, Sergio uhttp://hdl.handle.net/1963/181101313nas a2200133 4500008004300000245008200043210006900125260001300194520087600207100001801083700002201101700002001123856003601143 2005 en_Ud 00aSelf-similar folding patterns and energy scaling in compressed elastic sheets0 aSelfsimilar folding patterns and energy scaling in compressed el bElsevier3 aThin elastic sheets under isotropic compression, such as for example blisters formed by thin films which debonded from the substrate, can exhibit remarkably complex folding patterns. We discuss the scaling of the elastic energy with respect to the film thickness, and show that in certain regimes the optimal energy scaling can be reached\\nby self-similar folding patterns that refine towards the boundary, in agreement with experimental observations. We then extend the analysis\\nto anisotropic compression, and discuss a simplified scalar model which suggests the presence of a transition between a regime where\\nthe deformation is governed by global properties of the domain and another one where the direction of maximal compression dominates and the scale of the folds is mainly determined by the distance to the boundary in the direction of the folds themselves.1 aConti, Sergio1 aDeSimone, Antonio1 aMüller, Stefan uhttp://hdl.handle.net/1963/300001258nas a2200145 4500008004300000245008600043210006900129260001700198520078200215100002300997700001801020700002201038700001601060856003601076 2004 en_Ud 00aEnergetics and switching of quasi-uniform states in small ferromagnetic particles0 aEnergetics and switching of quasiuniform states in small ferroma bEDP Sciences3 aWe present a numerical algorithm to solve the micromagnetic equations based on tangential-plane minimization for the magnetization update and a homothethic-layer decomposition of outer space for the computation of the demagnetization field. As a first application, detailed results on the flower-vortex transition in the cube of Micromagnetic Standard Problem number 3 are obtained, which confirm, with a different method, those already present in the literature, and validate our method and code. We then turn to switching of small cubic or almost-cubic particles, in the single-domain limit. Our data show systematic deviations from the Stoner-Wohlfarth model due to the non-ellipsoidal shape of the particle, and in particular a non-monotone dependence on the particle size.1 aAlouges, François1 aConti, Sergio1 aDeSimone, Antonio1 aPokern, Ivo uhttp://hdl.handle.net/1963/2999