01213nas a2200145 4500008004100000245011200041210006900153260001300222520069800235653001900933100002200952700002000974700002200994856005101016 2014 en d00aDiscrete one-dimensional crawlers on viscous substrates: achievable net displacements and their energy cost0 aDiscrete onedimensional crawlers on viscous substrates achievabl bElsevier3 aWe study model one-dimensional crawlers, namely, model mechanical systems that can achieve self-propulsion by controlled shape changes of their body (extension or contraction of portions of the body), thanks to frictional interactions with a rigid substrate. We evaluate the achievable net displacement and the related energetic cost for self-propulsion by discrete crawlers (i.e., whose body is made of a discrete number of contractile or extensile segments) moving on substrates with either a Newtonian (linear) or a Bingham-type (stick-slip) rheology. Our analysis is aimed at constructing the basic building blocks towards an integrative, multi-scale description of crawling cell motility.10aCell migration1 aNoselli, Giovanni1 aTatone, Amabile1 aDeSimone, Antonio uhttp://urania.sissa.it/xmlui/handle/1963/3444901071nas a2200145 4500008004100000245006700041210006600108260001300174520054900187100002200736700002400758700002200782700002000804856010100824 2013 en d00aCrawlers in viscous environments: linear vs nonlinear rheology0 aCrawlers in viscous environments linear vs nonlinear rheology bElsevier3 aWe study model self-propelled crawlers which derive their propulsive capabilities from the tangential resistance to motion offered by the environment. Two types of relationships between tangential forces and slip velocities are considered: a linear, Newtonian one and a nonlinear one of Bingham-type. Different behaviors result from the two different rheologies. These differences and their implications in terms of motility performance are discussed. Our aim is to develop new tools and insight for future studies of cell motility by crawling.1 aDeSimone, Antonio1 aGuarnieri, Federica1 aNoselli, Giovanni1 aTatone, Amabile uhttps://www.math.sissa.it/publication/crawlers-viscous-environments-linear-vs-nonlinear-rheology01915nas a2200121 4500008004100000245008100041210006900122260001300191520151100204100002201715700002001737856003601757 2012 en d00aCrawling motility through the analysis of model locomotors: two case studies0 aCrawling motility through the analysis of model locomotors two c bSpringer3 aWe study model locomotors on a substrate, which derive their propulsive capabilities from the tangential (viscous or frictional) resistance offered by the substrate. Our aim is to develop new tools and insight for future studies of cellular motility by crawling and of collective bacterial motion. The purely viscous case (worm) is relevant for cellular motility by crawling of individual cells. We re-examine some recent results on snail locomotion in order to assess the role of finely regulated adhesion mechanisms in crawling motility. Our main conclusion is that such regulation, although well documented in several biological systems, is not indispensable to accomplish locomotion driven by internal deformations, provided that the crawler may execute sufficiently large body deformations. Thus, there is no snail theorem. Namely, the crawling analog of the scallop theorem of low Reynolds number hydrodynamics does not hold for snail-like crawlers. The frictional case is obtained by assuming that the viscous coefficient governing tangential resistance forces, which act parallel and in the direction opposite to the velocity of the point to which they are applied, depends on the normal force acting at that point. We combine these surface interactions with inertial effects in order to investigate the mechanisms governing the motility of a bristle-robot. This model locomotor is easily manufactured and has been proposed as an effective tool to replicate and study collective bacterial motility.1 aDeSimone, Antonio1 aTatone, Amabile uhttp://hdl.handle.net/1963/7017